
End-to-end learning of separate visual features for the different classes to
distinguish.

Results

BranchConnect: Image Categorization with
Learned Branch Connections

Karim Ahmed, Lorenzo Torresani

Intuition Technical Approach
CIFAR-100 (100 classes, 50K training examples)Goal: learn branch connectivity to classes from data by

optimizing training objective

References
[1] K. Ahmed et al. ”Network of Experts for large scale image categorization.", ECCV 2016.

[2] Yan et al. "HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition.", ICCV 2015
[3] Lin et al. “Network in Network”, ICLR 2014.
[4] He et al. "Deep residual learning for image recognition.” CVPR. 2016.

q During training, we update auxiliary
real-valued gates

q Constrain the number of active branch connections
per class to be a constant, K (a hyperparameter)

q Minimize using backpropagation
over and

�(�,g)

g �Mushroom  
Expert

Vehicle  
Expert

Cat  
Expert

Dog  
Expert

Figure 1: The architecture of BRANCHCONNECT for classifi-
cation of C classes. The branches implement M < C par-
allel feature extractors. Class-specific gates connect the M
branches to the C classes in the last fully-connected layer.

networks, which have been adopted in previous work to ad-
dress a wide array of tasks ranging from combining decision
trees with convolutional networks [13], to autoencoding [9]
as well as feature pooling [16].

3. Technical Approach
In this section we present our proposed technical ap-

proach. We begin by introducing the notation that will
be used throughout this paper. We assume we are given
a training dataset D of N class-labeled images: D =
{(x1, y1), . . . , (xN , yN)} where xi represents the i-th RGB
image and yi ∈ {1 , . . . , C} denotes its associated class la-
bel, with C indicating the total number of classes.

In subsection 3.1 we describe the architecture of BRANCH-
CONNECT. In subsection 3.2 and subsection 3.3 we discuss
the training and inference procedures, respectively.

3.1. The architecture of BRANCHCONNECT

The architecture of BRANCHCONNECT is a tree-structured
network, as illustrated in Figure 1. It consists of a stem that
splits into M < C branches, where M is a hyper-parameter
that controls the complexity of our model. The stem con-
sists of a sequence of convolutional layers possibly inter-
leaved by pooling layers. Each branch contains one or more
convolutional/pooling layers, followed by zero, one or more
fully-connected layers (in our experiments we present re-
sults for a variety of models). The branches have identical
architecture but different parameters. The BRANCHCONNECT

model culminates into a fully-connected layer of C neurons
using the softmax activation function to define a proper dis-

tribution over the C classes to discriminate. This last layer
takes as input the activations from the M branches and it
is equivalent in role to the last fully-connected layer of a
traditional CNN for categorization. However, in BRANCH-
CONNECT each of these C neurons has a dedicated branch
gate that controls the input effectively fed to the neuron.
More specifically, let us consider the c-th neuron in the last
fully-connected layer of C units. We refer to this neuron
as the neuron classifier of class c, since it is responsible for
computing the probability that the input image belongs to
class c. The branch gate of this class is a learned binary
vector gb

c =
[
gbc,1, g

b
c,2, . . . , g

b
c,M

]⊤ ∈ {0 , 1}M specifying
the branches taken into consideration by the neuron classi-
fier to predict the probability of class c. If gbc,m = 1 , then
the activation volume produced by the m-th branch is fed as
input to the neuron of class c. If gbc,m = 0 , then the compu-
tation from the m-th branch is ignored by the classifier for
class c. Thus, if we denote with Em the output activation
tensor computed by the last layer of the m-th branch, the
input Fc to the c-th neuron will be given by the following
equation:

Fc =
M∑

m=1

gbc,m · Em (1)

The interpretation is that the branch gate gb
c adds selec-

tively the information from the M branches by choosing the
branches that are most salient for the classification of class
c. Under this scheme, each branch can therefore special-
ize to compute features that are relevant only to a subset of
the classes. We also point out that depending on the con-
straints posed over gb

c, different interesting models can be
realized. For example, by introducing the constraint that∑

m gbc,m = 1 , only one branch will be active for each neu-
ron c (since gbc,m must be either 0 or 1). Such a model would
effectively partition the set of C classes into M disjoint
clusters, where branch m is trained to discriminate among
the classes in cluster m. It can be noted that at the other
end of the spectrum, if we set gbc,m = 1 for all branches m
and classes c, then all classifiers in the last layer would be
operating on the same input. In our experiments we will
demonstrate that the best results are achieved for a mid-
dle ground between these two extremes, i.e., by connecting
each neuron classifier to exactly K branches where K is a
cross-validated hyper-parameter such that 1 < K < M .
As discussed in the next section, the gate gb

c of each class
c is learned simultaneously with all the other weights in the
network via backpropagation.

We point out that Eq. 1 uses additive selective fusion of
the output produced by the branches. We have also tried
stacking (rather than adding) the feature maps of the ac-
tive branches but this increases by a multiplicative factor
the parameters in the last layer and in our experiments this
approach produced results inferior to the additive scheme.

1246

Contribution

The visual system of a layperson is a very good generalist that can
accurately discriminate coarse categories but lacks the specialist eye to
differentiate categories that look alike

Figure 2: Accuracy of BRANCHCONNECT using different number of branches (M = {10, 20, 30}) and number of active
connections (K) on CIFAR-100. Models were built from AlexNet-Quick.

ize also to other architectures. Figure 2 shows the accuracy
achieved by BRANCHCONNECT for M = 10, M = 20 and
M = 30 branches. For each of these 3 architectures, we
retrained our model using a varying number of active con-
nections (K) ranging from 1 to M . It can be seen that best
performance is achieved with the model having M = 30
branches and that the model with M = 20 branches does
better than that using M = 10 branches. This makes intu-
itive sense, as increasing the number of branches allows our
model to further diversify the features used by the differ-
ent classes. However, we can notice that in all three cases
(10, 20, 30 branches), the peak accuracy is obtained at or
around K = 5. Moving away from this peak point, the
accuracy drops nearly monotonically. When the number
of active connections K is near or equal to the maximum
value (M), the models perform poorly compared to the case
where K = 5 branches are connected. The case where only
one branch is connected (K = 1) also gives inferior results.

4.2.3 BRANCHCONNECT acts as a regularizer

We observed in Table 1 BRANCHCONNECT nets achieve higher
accuracy than “Base Models V2” despite having the same
depths and numbers of parameters. We hypothesize that this
happens because of a regularization effect induced by the
branched structure of our network. While a single-column
CNN performs feature extraction “horizontally” through the
layers, BRANCHCONNECT spreads some of the feature compu-
tation “vertically” through the parallel branches. This im-
plies that although BRANCHCONNECT has the same number
of parameters as “Base Model V2,” the number of feature
maps extracted through each horizontal path from the input
image to the end of a branch gate is smaller. This suggests
that the branch features should be less prone to overfit. We
confirm this hypothesis through two experiments.

In Figure 3 we plot the training loss versus the test loss
of four different models while varying the number of train-
ing iterations. The four models were trained on CIFAR-
100 and built from AlexNet-Quick (the supplementary ma-
terial includes the plot for AlexNet-Full). The four mod-
els are: 1) “Base Model V1”, 2) “Base Model V2”, 3) our
BRANCHCONNECT using K = 1 active connections out of

M = 10 branches, 4) a new model (“Random Connect”)
with M = 10 branches where each class was permanently
connected to only K = 1 branch chosen at random from
the given 10 branches. For the same training loss value,
BRANCHCONNECT systematically yields lower test loss value
than the base model and “Random Connect.” Also, upon
convergence BRANCHCONNECT achieves lower test loss but
higher training loss compare to the other two models. These
results support a regularization explanation for the effect of
BRANCHCONNECT. Furthermore, the overall poor test accu-
racy achieved by “Random Connect” emphasizes the im-
portance of learning the active connections rather than hard-
coding them a priori.

In a second experiment, we study the effect of increas-
ing network depth on test accuracy. In the case of single-
column CNNs, if the net has already enough learning capac-
ity, further increasing its depth makes it prone to poor local
minima [5]. But if BRANCHCONNECT acts as a regularizer, it
should be more resilient to increasing depths. This is con-
firmed by the box plots in Figure 4, which were obtained by
training both the base model (AlexNet-Quick “Base Model
V1”) and the corresponding BRANCHCONNECT model (using
M = 10 and K = 5) starting from 7 different initializa-
tions. The figure shows the resulting distribution of test ac-
curacy values for each model when the depth is increased up
to 4 layers (top and bottom quartiles in box, maximum and
minimum values above and below the box). For the base
model, the accuracy goes down sharply as the depth is in-
creased. It should also be noted that we were unable to train
a base model with 4 additional layers. On the other hand, we
can notice that the BRANCHCONNECT models are much more
robust to the increase in depth. We were also able to train
with good performance a BRANCHCONNECT model with 4 ex-
tra layers. Furthermore the variance in test accuracy is con-
sistently lower for the case of BRANCHCONNECT for all depths.

4.3. CIFAR-10

In this subsection we test our approach on CIFAR-10,
which includes 10 classes. This dataset is divided into
50,000 images for training, and 10,000 images for testing.
Table 2 shows the classification accuracy of our BRANCH-
CONNECT models based on three different base architectures.

1250

Table 1: Classification accuracy (%) (single crop) on
CIFAR-100 for 5 base architectures. BRANCHCONNECT uses
M = 10 branches. G:K/M means that each gate has K
active connections. We report performance for K = 1 and
when choosing the best value of K.1

Method depth #params Accuracy

A
le

xN
et

-Q
ui

ck Base Model V1 5 0.15M 44.3
Base Model V2 5 1.20M 40.26
NofE [1] 6 1.27M 49.09
BRANCHCONNECT G:1/10 5 1.20M 53.28
BRANCHCONNECT G:5/10 5 1.20M 54.62

A
le

xn
et

-F
ul

l Base Model V1 4 0.18M 54.04
Base Model V2 4 0.64M 50.42
NofE [1] 5 1.12M 56.24
BRANCHCONNECT G:1/10 4 0.64M 57.34
BRANCHCONNECT G:6/10 4 0.64M 60.27

N
IN

[1
7]

Base Model V1 9 1.38M 64.73
Base Model V2 9 1.61M 65.24
HD-CNN [25] n/a n/a 65.64
NofE [1] 11 4.66M 65.91
BRANCHCONNECT G:1/10 9 1.61M 66.10
BRANCHCONNECT G:5/10 9 1.61M 66.45

R
es

N
et

56
[7

] Base Model V1 56 0.86M 69.66
Base Model V2 56 1.47M 70.72
BRANCHCONNECT G:1/10 56 1.47M 71.24
BRANCHCONNECT G:5/10 56 1.47M 71.98

R
es

N
et

56
-4

X
[1

] Base Model V1 [1] 56 13.6M 72.23
Base Model V2 56 25.4M 73.12
NofE [1] 58 25.5M 74.71
BRANCHCONNECT G:1/10 56 25.4M 75.55
BRANCHCONNECT G:5/10 56 25.4M 75.72

employ as final layer a convolutional layer where the num-
ber of filters is equal to the number of classes (C). The final
prediction is obtained by performing global average pooling
over the feature maps of this layer. Thus, we build BRANCH-
CONNECT by placing in the stem all convolutional layers, ex-
cept the last two. Each branch then contains only one con-
volutional layer. Finally the branches are connected via our
binary gates to the final convolutional layer of C filters fol-
lowed by global average pooling for the final prediction.
4) ResNet56. This is the 56-layer residual network origi-
nally described in [7]. In the BRANCHCONNECT model, the
stem contains all the residual blocks except the last block
which is included in the branches. The final fully-connected
layer is shared among all branches.
5) ResNet56-4X. This model is identical in structure to
ResNet56 but it uses 4 times as many filters in each convo-
lutional layer and was shown in [1] to yield higher accuracy
on CIFAR-100.

1Note that some of the accuracies for NofE and Base Models listed here
differ slightly from those reported in [1]. The differences are merely due
to the fact that in [1] some of the architectures were tested using multiple
image crops, while our evaluation uses a single crop for all architectures.

The results achieved with these 5 architectures are shown
in Table 1. For each architecture, we report the accuracy
of the base model “Base Model V1” as well as that ob-
tained with our BRANCHCONNECT. We report two numbers
for BRANCHCONNECT: the first using only one active branch
per class (i.e., K = 1), the second obtained by choosing
the best value of K (ranging from 1 to 10) for each archi-
tecture. We also include for comparison the performance
achieved by Network of Experts (NofE) [1], which also
builds a branched architecture from the given base model.
However, NofE does so by performing hierarchical decom-
position of the classes using two separate training stages
and it connects each class to only one branch by construc-
tion. For the case of NIN, we also include the performance
reported in [25] for the hierarchical HD-CNN built from this
base model.

We can see from Table 1 that BRANCHCONNECT outper-
forms the base model “Base Model V1” for all five archi-
tectures. BRANCHCONNECT does also considerably better than
NofE [1] and HD-CNN [25], which are the most closely re-
lated approaches to our own. For all architecture the peak
performance of BRANCHCONNECT is achieved when setting
the number of active branches (K) to be greater than 1 (the
best accuracy is achieved with K = 6 for AlexNet-Full and
with K = 5 for the other four models).

It can be noted that BRANCHCONNECT involves more pa-
rameters than the base models “Base Model V1”. Thus,
one could argue that the improved performance of BRANCH-
CONNECT is merely the result of a larger learning capacity.
To disprove this hypothesis we report the results for another
version of the base models named “Base Model V2”. These
base models were built by increasing uniformly the number
of filters and the number of units in the convolutional lay-
ers and the first fully connected layer of “Base Model V1”
in order to match exactly the total number of parameters in
the BRANCHCONNECT models. BRANCHCONNECT with the same
number of parameters and overall depth achieves much bet-
ter accuracy than “Base Model V2”. In subsection 4.2.3
we will show that this is due to a regularization effect in-
duced by our architecture. In supplementary material we
also report results obtained by shrinking the numbers of pa-
rameters in BRANCHCONNECT to match those in the original
“Base Models V1”. Even in this scenario, BRANCHCONNECT

consistently outperforms the base models.

4.2.2 Varying the number of branches (M) and the
number of active connections (K)

In this subsection we study the effect of varying the num-
ber of branches (M) in addition to the number of active
connections (K). Due to lack of space, here we report
results only using the AlexNet-Quick base architecture but
we found the overall trend on this base model to general-

1249

CIFAR-10
(10 classes, 50K training examples)

ImageNet
(1000 classes, 1.28M training examples)

Figure 3: Evolution of train loss vs test loss during train-
ing on CIFAR-100. The training trajectory is from right to
left. BRANCHCONNECT yields lower test loss for the same train
loss compared to the base models and a net with randomly-
chosen active connections.

Figure 4: The effect of increasing the network depth on
test accuracy (using CIFAR-100). Boxes show the distribu-
tion of test accuracy values of the same model trained using
different initialization seeds. Left: base model (AlexNet-
Quick). Right: BRANCHCONNECT. Our model is less sensitive
to variations in the random initialization and yields stable
performance even for increased depth.

Table 2: Classification accuracy (%) on CIFAR-10 dataset.
G:K/M denotes K active connections out of a total of M .

Architecture Method Accuracy

AlexNet-Quick Base Model 76.86
BRANCHCONNECT G:3/5 82.84

AlexNet-Full Base Model 82.78
BRANCHCONNECT G:3/5 85.00

ResNet-56 [7] Base Model 92.04
BRANCHCONNECT G:3/5 92.46

4.4. ImageNet
We evaluate our approach on the ImageNet 2012 large-

scale classification dataset [4], which includes images of
1000 classes. The training set contains 1.28M images. We
use the validation set which consist of 50K images to eval-
uate the performance. In Table 3, we report the Top-1 accu-
racies of different models.

4.5. Synth dataset
Finally, we evaluate our approach on a text recognition

task using the Synth dataset [10]. The dataset contains a

Table 3: Top-1 single crop validation accuracy (%) on Ima-
geNet. G:K/M denotes K active connections out of M .

Architecture Method Accuracy

AlexNet [4] Base Model 58.71
NofE [1] 61.29
BRANCHCONNECT G:5/10 63.49

ResNet50 [7] Base Model [7] 76.15
BRANCHCONNECT G:5/10 77.39
BRANCHCONNECT G:8/15 77.68

ResNet101 [7] Base Model [7] 77.37
BRANCHCONNECT G:5/10 78.19

total of 9M images of size 32x100. Each image contains
a word drawn from a 90K dictionary. The dataset is di-
vided into 900K images for testing, 900K images for vali-
dation, and the remaining of the images are used for train-
ing. The recognition task is to classify each of the 900K
testing images into one of the 90K words (i.e., C = 90K).
The very large number of classes renders this dataset an in-
teresting benchmark to test our BRANCHCONNECT approach.
Our branched models are built from the base architecture
“DICT+2-90K” used by Jaderberg et al. [11]. This base ar-
chitecture has 5 convolutional layers and 3 fully-connected
layers. Due to the large number of the classes, the training
of these models was performed by adding the classes incre-
mentally as described in [11]. In Table 4 we show the test
accuracy of the base architecture and the BRANCHCONNECT

models. Additionally, we show the results of the models
learned from the Synth dataset when tested on other smaller
datasets: IC03 [19], SVT [23], and IC13 [12].

Table 4: Word recognition accuracy (%) for models trained
on Synth, using DICT+2-90k [11] as base model.

Model Test Dataset
Synth [10] IC03 [19] SVT [23] IC13 [12]

Base Model [10] 95.2 93.1 80.7 90.8
BRANCHCONNECT G:7/10 95.6 93.7 83.4 92.1

5. Conclusions
In this paper we presented BRANCHCONNECT—a multi-

branch, gated architecture that enables the learning of sepa-
rate features for each class in large-scale classification prob-
lems. The training of our approach is end-to-end and it is
posed as a single optimization that simultaneously learns
the network weights and the branch connections for each
class. We demonstrated the benefits of our method by adapt-
ing several popular CNNs into the form of BRANCHCON-
NECT. We also provided empirical analysis suggesting that
BRANCHCONNECT induces a beneficial form of regularization,
reducing overfitting and improving generalization.

Future work will focus on more sophisticated combina-
tion schemes. The learned gates in our model can be viewed
as performing a rudimentary form of architecture learning,
limited to the last layer. We plan to study the applicability of
this mechanism for more general forms of model learning.

1251

q The architecture of BranchConnect for classification of C classes. The
branches implement M < C feature extractors. Class-specific gates
connect the M branches to the C classes in the last fully-connected
layer.

q The learned gates determines for each class the subset of features
to use.

Algorithm 1 Training Branch Gates with BRANCHCONNECT.
Input: a minibatch of labeled examples (xi, yi), C: number of classes,
M : number of branches, K: the number of active branch connections
per class, η: learning rate, ℓ: the loss over the minibatch, gr

c ∈ [0 , 1]M :
real-valued branch gates from previous training iteration.
Output: updated gr

c , for all classes c = 1, . . . , C
1. Forward Propagation:
for c← 1 to C do

Normalize the real-valued branch gates of class c to sum up to 1:

grc,m ←
grc,m∑M

m′=1
gr
c,m′

, for m = 1, . . . ,M

Reset binary branch gates: gb
c ← 0

Draw K distinct samples from multinomial branch gate distribution:
i1, i2, . . . , iK ← Mult(grc,1, g

r
c,2, . . . , g

r
c,M)

Set active binary branch gates based on drawn samples:
gbc,ik ← 1 for k = 1, ...,K
Compute input Fc to the c-th neuron, given branch activations Em:
Fc ←

∑M
m=1 g

b
c,m · Em

end for
2. Backward Propagation:
for c← 1 to C do

Compute ∂ℓ
∂Fc

from ℓ and neuron classifier parameters
Compute ∂ℓ

∂Em
given ∂ℓ

∂Fc
, gbc,m for m = 1, ...,M

end for
2. Parameter Update:
for c← 1 to C do

Compute ∂ℓ
∂gbc,m

given ∂ℓ
∂Fc

and Em, for m = 1, ...,M

grc,m ← clip(grc,m − η · ∂ℓ
∂gbc,m

) for m = 1, ...,M

end for

NECT models built from different CNN architectures on four
different datasets: CIFAR-100 [14], CIFAR-10 [14], Ima-
geNet [4], and the Synthetic Word Dataset (Synth) [11, 10].

4.1. Reshaping a traditional CNN into a multi-
branch net with BRANCHCONNECT

In order to show the benefits of BRANCHCONNECT we
present results obtained by reshaping several traditional
CNNs from the literature into the form of our multi-branch
architecture. We refer to the original architectures as the
base models. Note that our approach requires only the spec-
ification of the base CNN architecture, i.e., no pre-trained
parameters are needed.

We evaluate a simple, single recipe to reshape each base
model into an BRANCHCONNECT network. Let Pc be the total
number of convolutional/pooling layers of the base model,
and Pf the number of fully-connected layers following the
convolutional/pooling layers. The stem of BRANCHCONNECT

is formed by using Pc−1 convolutional/pooling layers iden-
tical in specifications to the first Pc − 1 layers of the base
model. Then, we place in each branch the remaining con-
volutional layer of the base model followed by Pf − 1 fully
connected layers identical in specifications to the first Pf−1
fully connected layers of the base models (i.e, all fc layers
except the last one). The M branches have identical archi-
tecture but distinct parameters. Then, we place a final fully

connected layer of size C at the top. This layer is shared
among all branches and is responsible for the final predic-
tion. Neuron c in this layer is connected through learned
gate gb

c to the last layer of the M branches (see Figure 1).

4.2. CIFAR-100
CIFAR-100 is a dataset of 32x32 color images spanning

C = 100 classes. The training set contains 50,000 examples
and the test set includes 10,000 images. We use this dataset
to conduct a comprehensive study using different network
architectures and settings.

4.2.1 Accuracy Gain for Different Architectures

We begin by showing that BRANCHCONNECT yields consis-
tent improvements irrespective of the specific architecture.
To demonstrate this, we take five distinct architectures from
prior work [7, 25, 1] and reshape them as BRANCHCONNECT.

The architectures are listed below (full specifications are
listed in the supplementary material). For this preliminary
set of experiments we fix the number of BRANCHCONNECT

branches M to 10. For each architecture, we train 10 sepa-
rate models for values of K (the number of active branches
per class) ranging from 1 to 10. As already discussed in
section 3, we build the BRANCHCONNECT network from each
base model by placing all convolutional layers except the
last one in the stem. Each branch then contains one convo-
lutional layer (identical in specifications to the last convolu-
tional layer of the base model) followed by fully-connected
layers (identical to those in the base model), except for the
last one. The last fully-connected layer is shared among all
branches. (see Figure 1).

Here are the five base models for this experiment:
1) AlexNet-Quick. This is a slightly modified version of
the AlexNet model [15] adapted by Ahmed et al [1] to
work on the 32x32 images of CIFAR-100. It consists of
3 convolutional layers and 2 fully-connected layers. Thus,
our BRANCHCONNECT net constructed from AlexNet-Quick in-
cludes two convolutional layers in the stem, while each
branch contains one convolutional layer with the same spec-
ification as the third convolutional layer in the base model
and one fully-connected layer.
2) AlexNet-Full. This model is also taken from [1]. This
base CNN is slightly different from AlexNet-Quick as it has
only one fully-connected layer instead of two layers, and
it uses local response normalization layers. The accuracy
of this base model is higher than AlexNet-Quick. The cor-
responding BRANCHCONNECT model consists of a stem that
contains the first two convolutional layers. Each branch
consists of only one convolutional layer with the same spec-
ification as the third convolutional layer in the base model.
3) NIN. This model is a “Network In Network” (NIN) [17].
NIN models do not use fully-connected layers. Instead, they

1248

Forward propagation:

1. Stochastically binarize into s.t.

2. Perform forward pass using binary gates

Algorithm 1 Training Branch Gates with BRANCHCONNECT.
Input: a minibatch of labeled examples (xi, yi), C: number of classes,
M : number of branches, K: the number of active branch connections
per class, η: learning rate, ℓ: the loss over the minibatch, gr

c ∈ [0 , 1]M :
real-valued branch gates from previous training iteration.
Output: updated gr

c , for all classes c = 1, . . . , C
1. Forward Propagation:
for c← 1 to C do

Normalize the real-valued branch gates of class c to sum up to 1:

grc,m ←
grc,m∑M

m′=1
gr
c,m′

, for m = 1, . . . ,M

Reset binary branch gates: gb
c ← 0

Draw K distinct samples from multinomial branch gate distribution:
i1, i2, . . . , iK ← Mult(grc,1, g

r
c,2, . . . , g

r
c,M)

Set active binary branch gates based on drawn samples:
gbc,ik ← 1 for k = 1, ...,K
Compute input Fc to the c-th neuron, given branch activations Em:
Fc ←

∑M
m=1 g

b
c,m · Em

end for
2. Backward Propagation:
for c← 1 to C do

Compute ∂ℓ
∂Fc

from ℓ and neuron classifier parameters
Compute ∂ℓ

∂Em
given ∂ℓ

∂Fc
, gbc,m for m = 1, ...,M

end for
2. Parameter Update:
for c← 1 to C do

Compute ∂ℓ
∂gbc,m

given ∂ℓ
∂Fc

and Em, for m = 1, ...,M

grc,m ← clip(grc,m − η · ∂ℓ
∂gbc,m

) for m = 1, ...,M

end for

NECT models built from different CNN architectures on four
different datasets: CIFAR-100 [14], CIFAR-10 [14], Ima-
geNet [4], and the Synthetic Word Dataset (Synth) [11, 10].

4.1. Reshaping a traditional CNN into a multi-
branch net with BRANCHCONNECT

In order to show the benefits of BRANCHCONNECT we
present results obtained by reshaping several traditional
CNNs from the literature into the form of our multi-branch
architecture. We refer to the original architectures as the
base models. Note that our approach requires only the spec-
ification of the base CNN architecture, i.e., no pre-trained
parameters are needed.

We evaluate a simple, single recipe to reshape each base
model into an BRANCHCONNECT network. Let Pc be the total
number of convolutional/pooling layers of the base model,
and Pf the number of fully-connected layers following the
convolutional/pooling layers. The stem of BRANCHCONNECT

is formed by using Pc−1 convolutional/pooling layers iden-
tical in specifications to the first Pc − 1 layers of the base
model. Then, we place in each branch the remaining con-
volutional layer of the base model followed by Pf − 1 fully
connected layers identical in specifications to the first Pf−1
fully connected layers of the base models (i.e, all fc layers
except the last one). The M branches have identical archi-
tecture but distinct parameters. Then, we place a final fully

connected layer of size C at the top. This layer is shared
among all branches and is responsible for the final predic-
tion. Neuron c in this layer is connected through learned
gate gb

c to the last layer of the M branches (see Figure 1).

4.2. CIFAR-100
CIFAR-100 is a dataset of 32x32 color images spanning

C = 100 classes. The training set contains 50,000 examples
and the test set includes 10,000 images. We use this dataset
to conduct a comprehensive study using different network
architectures and settings.

4.2.1 Accuracy Gain for Different Architectures

We begin by showing that BRANCHCONNECT yields consis-
tent improvements irrespective of the specific architecture.
To demonstrate this, we take five distinct architectures from
prior work [7, 25, 1] and reshape them as BRANCHCONNECT.

The architectures are listed below (full specifications are
listed in the supplementary material). For this preliminary
set of experiments we fix the number of BRANCHCONNECT

branches M to 10. For each architecture, we train 10 sepa-
rate models for values of K (the number of active branches
per class) ranging from 1 to 10. As already discussed in
section 3, we build the BRANCHCONNECT network from each
base model by placing all convolutional layers except the
last one in the stem. Each branch then contains one convo-
lutional layer (identical in specifications to the last convolu-
tional layer of the base model) followed by fully-connected
layers (identical to those in the base model), except for the
last one. The last fully-connected layer is shared among all
branches. (see Figure 1).

Here are the five base models for this experiment:
1) AlexNet-Quick. This is a slightly modified version of
the AlexNet model [15] adapted by Ahmed et al [1] to
work on the 32x32 images of CIFAR-100. It consists of
3 convolutional layers and 2 fully-connected layers. Thus,
our BRANCHCONNECT net constructed from AlexNet-Quick in-
cludes two convolutional layers in the stem, while each
branch contains one convolutional layer with the same spec-
ification as the third convolutional layer in the base model
and one fully-connected layer.
2) AlexNet-Full. This model is also taken from [1]. This
base CNN is slightly different from AlexNet-Quick as it has
only one fully-connected layer instead of two layers, and
it uses local response normalization layers. The accuracy
of this base model is higher than AlexNet-Quick. The cor-
responding BRANCHCONNECT model consists of a stem that
contains the first two convolutional layers. Each branch
consists of only one convolutional layer with the same spec-
ification as the third convolutional layer in the base model.
3) NIN. This model is a “Network In Network” (NIN) [17].
NIN models do not use fully-connected layers. Instead, they

1248

3.2. Training BRANCHCONNECT

The training of our model is end-to-end and it is done
by optimizing via backpropagation a given learning objec-
tive ℓ over the C classes of dataset D . However, in the
case of BRANCHCONNECT, the objective is optimized with re-
spect to not only the weights of the network but also the
branch gates, which are viewed as additional parameters in
the model.

In BRANCHCONNECT, the weights of the convolutional and
fully connected layers are real values, as in traditional
CNNs. Instead, the branch gates are binary, which ren-
der optimization more challenging. To learn these binary
parameters, we adopt a procedure inspired by the algo-
rithm proposed in [3] to train neural networks with binary
weights. During training we store and update a real-valued
version gr

c ∈ [0 , 1]M of the branch gates, with entries
clipped to lie in the continuous interval from 0 to 1.

In general, the training of a CNN consists of three
steps: 1) forward propagation, 2) backward propagation,
and 3) parameters update. We stochastically binarize the
real-valued branch gates into binary-valued vectors gb

c ∈
{0 , 1}M only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters
update (step 3), the method updates the real-valued branch
gates gr

c . The remaining weights of the convolutional and
fully connected layers are optimized using standard back-
propagation. In the next subsections we discuss in further
detail the gate training procedure, under the assumption that
at any time there can be only K active entries in the bi-
nary branch gate gb

c, where K is a predefined integer hyper-
parameter with 1 ≤ K ≤ M . In other words, we impose
the following constraints:

M∑

m=1

gbc,m = K, ∀c ∈ {1, . . . , C}

gbc,m ∈ {0 , 1}, ∀c ∈ {1, . . . , C} and ∀m ∈ {1, . . . ,M}.

These constraints imply that each classifier neuron in the
last layer receives input from exactly K branches. The en-
tire training procedure for the branch gates is summarized
in Algorithm 1 and discussed in detail below.

Branch Gates: Forward Propagation

During the forward propagation, our algorithm first nor-
malizes the current M real-valued branch gates grc,m for
each class c to sum up to 1. This is done so that
Mult(grc,1, grc,2, . . . , grc,M) defines a proper multinomial dis-
tribution over the M branch connections of the c-th neuron
classifier. Then, the binary branch gate gb

c is stochastically
generated by drawing K distinct samples i1, i2, . . . , iK ∈
{1, . . . ,M} from the multinomial distribution over the
branch connections. Then, the entries corresponding to the

K samples are activated in the binary branch gate vector,
i.e., gbc,ik ← 1, for k = 1, ...,K. The input activation vol-
ume to the neuron classifier for each class c is then com-
puted according to Eq. 1 from the sampled binary branch
gates and the final prediction is obtained.

We have also experimented with a deterministic proce-
dure that sets the active branch connections in gb

c to corre-
spond to the K largest values in gr

c . However, we found that
this often causes the binary gate vector gb

c to remain stuck at
the initial configuration. As also reported in [3], we found
the stochastic assignment of binary gates according to the
real-valued probabilities to yield much better performance.
In all our experiments we initialize the real-valued scalar
branch gates grc,m to 0 .5 . This allows the training procedure
to explore different connections in the first few iterations.

Branch Gates: Backward Propagation

In the backward propagation step, our method first com-
putes the gradient of the mini-batch loss with respect to
the input volume of each neuron classifier, i.e., ∂ℓ

∂Fc
. Then,

the gradient ∂ℓ
∂Em

with respect to each branch output is ob-
tained via back-propagation from ∂ℓ

∂Fc
and the current bi-

nary branch gates gbc,m.

Branch Gates: Parameters Update

As shown in Algorithm 1, in the parameter update step our
algorithm computes the gradient with respect to the binary
branch gates for each branch. Then, using these computed
gradients and the given learning rate, it updates the real-
valued branch gates via gradient descent. At this time we
clip the updated real-valued branch gates to constrain them
to remain within the valid interval [0 , 1]. The same clipping
strategy was adopted for the binary weights in the work of
Courbariaux et al. [3].

3.3. Inference with BRANCHCONNECT

In order to perform test-time inference on new samples
given a trained model with real-valued branch gates gr

c , we
adopt a deterministic strategy, rather than the stochastic ap-
proach used during training. We simply set to 1 the entries
of gb

c that correspond to the largest K values of gr
c , and

leave all other entries set to 0.
We have also experimented with using the non-binary

gates gr
c for inference at test time but found this approach

to yield much lower performance. This is understandable
given that the learning objective is computed and minimized
using binary rather real-valued gates.

4. Experiments
We demonstrate the effectiveness and the generality of

our approach by presenting experiments using BRANCHCON-

1247

3.2. Training BRANCHCONNECT

The training of our model is end-to-end and it is done
by optimizing via backpropagation a given learning objec-
tive ℓ over the C classes of dataset D . However, in the
case of BRANCHCONNECT, the objective is optimized with re-
spect to not only the weights of the network but also the
branch gates, which are viewed as additional parameters in
the model.

In BRANCHCONNECT, the weights of the convolutional and
fully connected layers are real values, as in traditional
CNNs. Instead, the branch gates are binary, which ren-
der optimization more challenging. To learn these binary
parameters, we adopt a procedure inspired by the algo-
rithm proposed in [3] to train neural networks with binary
weights. During training we store and update a real-valued
version gr

c ∈ [0 , 1]M of the branch gates, with entries
clipped to lie in the continuous interval from 0 to 1.

In general, the training of a CNN consists of three
steps: 1) forward propagation, 2) backward propagation,
and 3) parameters update. We stochastically binarize the
real-valued branch gates into binary-valued vectors gb

c ∈
{0 , 1}M only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters
update (step 3), the method updates the real-valued branch
gates gr

c . The remaining weights of the convolutional and
fully connected layers are optimized using standard back-
propagation. In the next subsections we discuss in further
detail the gate training procedure, under the assumption that
at any time there can be only K active entries in the bi-
nary branch gate gb

c, where K is a predefined integer hyper-
parameter with 1 ≤ K ≤ M . In other words, we impose
the following constraints:

M∑

m=1

gbc,m = K, ∀c ∈ {1, . . . , C}

gbc,m ∈ {0 , 1}, ∀c ∈ {1, . . . , C} and ∀m ∈ {1, . . . ,M}.

These constraints imply that each classifier neuron in the
last layer receives input from exactly K branches. The en-
tire training procedure for the branch gates is summarized
in Algorithm 1 and discussed in detail below.

Branch Gates: Forward Propagation

During the forward propagation, our algorithm first nor-
malizes the current M real-valued branch gates grc,m for
each class c to sum up to 1. This is done so that
Mult(grc,1, grc,2, . . . , grc,M) defines a proper multinomial dis-
tribution over the M branch connections of the c-th neuron
classifier. Then, the binary branch gate gb

c is stochastically
generated by drawing K distinct samples i1, i2, . . . , iK ∈
{1, . . . ,M} from the multinomial distribution over the
branch connections. Then, the entries corresponding to the

K samples are activated in the binary branch gate vector,
i.e., gbc,ik ← 1, for k = 1, ...,K. The input activation vol-
ume to the neuron classifier for each class c is then com-
puted according to Eq. 1 from the sampled binary branch
gates and the final prediction is obtained.

We have also experimented with a deterministic proce-
dure that sets the active branch connections in gb

c to corre-
spond to the K largest values in gr

c . However, we found that
this often causes the binary gate vector gb

c to remain stuck at
the initial configuration. As also reported in [3], we found
the stochastic assignment of binary gates according to the
real-valued probabilities to yield much better performance.
In all our experiments we initialize the real-valued scalar
branch gates grc,m to 0 .5 . This allows the training procedure
to explore different connections in the first few iterations.

Branch Gates: Backward Propagation

In the backward propagation step, our method first com-
putes the gradient of the mini-batch loss with respect to
the input volume of each neuron classifier, i.e., ∂ℓ

∂Fc
. Then,

the gradient ∂ℓ
∂Em

with respect to each branch output is ob-
tained via back-propagation from ∂ℓ

∂Fc
and the current bi-

nary branch gates gbc,m.

Branch Gates: Parameters Update

As shown in Algorithm 1, in the parameter update step our
algorithm computes the gradient with respect to the binary
branch gates for each branch. Then, using these computed
gradients and the given learning rate, it updates the real-
valued branch gates via gradient descent. At this time we
clip the updated real-valued branch gates to constrain them
to remain within the valid interval [0 , 1]. The same clipping
strategy was adopted for the binary weights in the work of
Courbariaux et al. [3].

3.3. Inference with BRANCHCONNECT

In order to perform test-time inference on new samples
given a trained model with real-valued branch gates gr

c , we
adopt a deterministic strategy, rather than the stochastic ap-
proach used during training. We simply set to 1 the entries
of gb

c that correspond to the largest K values of gr
c , and

leave all other entries set to 0.
We have also experimented with using the non-binary

gates gr
c for inference at test time but found this approach

to yield much lower performance. This is understandable
given that the learning objective is computed and minimized
using binary rather real-valued gates.

4. Experiments
We demonstrate the effectiveness and the generality of

our approach by presenting experiments using BRANCHCON-

1247

3.2. Training BRANCHCONNECT

The training of our model is end-to-end and it is done
by optimizing via backpropagation a given learning objec-
tive ℓ over the C classes of dataset D . However, in the
case of BRANCHCONNECT, the objective is optimized with re-
spect to not only the weights of the network but also the
branch gates, which are viewed as additional parameters in
the model.

In BRANCHCONNECT, the weights of the convolutional and
fully connected layers are real values, as in traditional
CNNs. Instead, the branch gates are binary, which ren-
der optimization more challenging. To learn these binary
parameters, we adopt a procedure inspired by the algo-
rithm proposed in [3] to train neural networks with binary
weights. During training we store and update a real-valued
version gr

c ∈ [0 , 1]M of the branch gates, with entries
clipped to lie in the continuous interval from 0 to 1.

In general, the training of a CNN consists of three
steps: 1) forward propagation, 2) backward propagation,
and 3) parameters update. We stochastically binarize the
real-valued branch gates into binary-valued vectors gb

c ∈
{0 , 1}M only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters
update (step 3), the method updates the real-valued branch
gates gr

c . The remaining weights of the convolutional and
fully connected layers are optimized using standard back-
propagation. In the next subsections we discuss in further
detail the gate training procedure, under the assumption that
at any time there can be only K active entries in the bi-
nary branch gate gb

c, where K is a predefined integer hyper-
parameter with 1 ≤ K ≤ M . In other words, we impose
the following constraints:

M∑

m=1

gbc,m = K, ∀c ∈ {1, . . . , C}

gbc,m ∈ {0 , 1}, ∀c ∈ {1, . . . , C} and ∀m ∈ {1, . . . ,M}.

These constraints imply that each classifier neuron in the
last layer receives input from exactly K branches. The en-
tire training procedure for the branch gates is summarized
in Algorithm 1 and discussed in detail below.

Branch Gates: Forward Propagation

During the forward propagation, our algorithm first nor-
malizes the current M real-valued branch gates grc,m for
each class c to sum up to 1. This is done so that
Mult(grc,1, grc,2, . . . , grc,M) defines a proper multinomial dis-
tribution over the M branch connections of the c-th neuron
classifier. Then, the binary branch gate gb

c is stochastically
generated by drawing K distinct samples i1, i2, . . . , iK ∈
{1, . . . ,M} from the multinomial distribution over the
branch connections. Then, the entries corresponding to the

K samples are activated in the binary branch gate vector,
i.e., gbc,ik ← 1, for k = 1, ...,K. The input activation vol-
ume to the neuron classifier for each class c is then com-
puted according to Eq. 1 from the sampled binary branch
gates and the final prediction is obtained.

We have also experimented with a deterministic proce-
dure that sets the active branch connections in gb

c to corre-
spond to the K largest values in gr

c . However, we found that
this often causes the binary gate vector gb

c to remain stuck at
the initial configuration. As also reported in [3], we found
the stochastic assignment of binary gates according to the
real-valued probabilities to yield much better performance.
In all our experiments we initialize the real-valued scalar
branch gates grc,m to 0 .5 . This allows the training procedure
to explore different connections in the first few iterations.

Branch Gates: Backward Propagation

In the backward propagation step, our method first com-
putes the gradient of the mini-batch loss with respect to
the input volume of each neuron classifier, i.e., ∂ℓ

∂Fc
. Then,

the gradient ∂ℓ
∂Em

with respect to each branch output is ob-
tained via back-propagation from ∂ℓ

∂Fc
and the current bi-

nary branch gates gbc,m.

Branch Gates: Parameters Update

As shown in Algorithm 1, in the parameter update step our
algorithm computes the gradient with respect to the binary
branch gates for each branch. Then, using these computed
gradients and the given learning rate, it updates the real-
valued branch gates via gradient descent. At this time we
clip the updated real-valued branch gates to constrain them
to remain within the valid interval [0 , 1]. The same clipping
strategy was adopted for the binary weights in the work of
Courbariaux et al. [3].

3.3. Inference with BRANCHCONNECT

In order to perform test-time inference on new samples
given a trained model with real-valued branch gates gr

c , we
adopt a deterministic strategy, rather than the stochastic ap-
proach used during training. We simply set to 1 the entries
of gb

c that correspond to the largest K values of gr
c , and

leave all other entries set to 0.
We have also experimented with using the non-binary

gates gr
c for inference at test time but found this approach

to yield much lower performance. This is understandable
given that the learning objective is computed and minimized
using binary rather real-valued gates.

4. Experiments
We demonstrate the effectiveness and the generality of

our approach by presenting experiments using BRANCHCON-

1247

3.2. Training BRANCHCONNECT

The training of our model is end-to-end and it is done
by optimizing via backpropagation a given learning objec-
tive ℓ over the C classes of dataset D . However, in the
case of BRANCHCONNECT, the objective is optimized with re-
spect to not only the weights of the network but also the
branch gates, which are viewed as additional parameters in
the model.

In BRANCHCONNECT, the weights of the convolutional and
fully connected layers are real values, as in traditional
CNNs. Instead, the branch gates are binary, which ren-
der optimization more challenging. To learn these binary
parameters, we adopt a procedure inspired by the algo-
rithm proposed in [3] to train neural networks with binary
weights. During training we store and update a real-valued
version gr

c ∈ [0 , 1]M of the branch gates, with entries
clipped to lie in the continuous interval from 0 to 1.

In general, the training of a CNN consists of three
steps: 1) forward propagation, 2) backward propagation,
and 3) parameters update. We stochastically binarize the
real-valued branch gates into binary-valued vectors gb

c ∈
{0 , 1}M only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters
update (step 3), the method updates the real-valued branch
gates gr

c . The remaining weights of the convolutional and
fully connected layers are optimized using standard back-
propagation. In the next subsections we discuss in further
detail the gate training procedure, under the assumption that
at any time there can be only K active entries in the bi-
nary branch gate gb

c, where K is a predefined integer hyper-
parameter with 1 ≤ K ≤ M . In other words, we impose
the following constraints:

M∑

m=1

gbc,m = K, ∀c ∈ {1, . . . , C}

gbc,m ∈ {0 , 1}, ∀c ∈ {1, . . . , C} and ∀m ∈ {1, . . . ,M}.

These constraints imply that each classifier neuron in the
last layer receives input from exactly K branches. The en-
tire training procedure for the branch gates is summarized
in Algorithm 1 and discussed in detail below.

Branch Gates: Forward Propagation

During the forward propagation, our algorithm first nor-
malizes the current M real-valued branch gates grc,m for
each class c to sum up to 1. This is done so that
Mult(grc,1, grc,2, . . . , grc,M) defines a proper multinomial dis-
tribution over the M branch connections of the c-th neuron
classifier. Then, the binary branch gate gb

c is stochastically
generated by drawing K distinct samples i1, i2, . . . , iK ∈
{1, . . . ,M} from the multinomial distribution over the
branch connections. Then, the entries corresponding to the

K samples are activated in the binary branch gate vector,
i.e., gbc,ik ← 1, for k = 1, ...,K. The input activation vol-
ume to the neuron classifier for each class c is then com-
puted according to Eq. 1 from the sampled binary branch
gates and the final prediction is obtained.

We have also experimented with a deterministic proce-
dure that sets the active branch connections in gb

c to corre-
spond to the K largest values in gr

c . However, we found that
this often causes the binary gate vector gb

c to remain stuck at
the initial configuration. As also reported in [3], we found
the stochastic assignment of binary gates according to the
real-valued probabilities to yield much better performance.
In all our experiments we initialize the real-valued scalar
branch gates grc,m to 0 .5 . This allows the training procedure
to explore different connections in the first few iterations.

Branch Gates: Backward Propagation

In the backward propagation step, our method first com-
putes the gradient of the mini-batch loss with respect to
the input volume of each neuron classifier, i.e., ∂ℓ

∂Fc
. Then,

the gradient ∂ℓ
∂Em

with respect to each branch output is ob-
tained via back-propagation from ∂ℓ

∂Fc
and the current bi-

nary branch gates gbc,m.

Branch Gates: Parameters Update

As shown in Algorithm 1, in the parameter update step our
algorithm computes the gradient with respect to the binary
branch gates for each branch. Then, using these computed
gradients and the given learning rate, it updates the real-
valued branch gates via gradient descent. At this time we
clip the updated real-valued branch gates to constrain them
to remain within the valid interval [0 , 1]. The same clipping
strategy was adopted for the binary weights in the work of
Courbariaux et al. [3].

3.3. Inference with BRANCHCONNECT

In order to perform test-time inference on new samples
given a trained model with real-valued branch gates gr

c , we
adopt a deterministic strategy, rather than the stochastic ap-
proach used during training. We simply set to 1 the entries
of gb

c that correspond to the largest K values of gr
c , and

leave all other entries set to 0.
We have also experimented with using the non-binary

gates gr
c for inference at test time but found this approach

to yield much lower performance. This is understandable
given that the learning objective is computed and minimized
using binary rather real-valued gates.

4. Experiments
We demonstrate the effectiveness and the generality of

our approach by presenting experiments using BRANCHCON-

1247

3.2. Training BRANCHCONNECT

The training of our model is end-to-end and it is done
by optimizing via backpropagation a given learning objec-
tive ℓ over the C classes of dataset D . However, in the
case of BRANCHCONNECT, the objective is optimized with re-
spect to not only the weights of the network but also the
branch gates, which are viewed as additional parameters in
the model.

In BRANCHCONNECT, the weights of the convolutional and
fully connected layers are real values, as in traditional
CNNs. Instead, the branch gates are binary, which ren-
der optimization more challenging. To learn these binary
parameters, we adopt a procedure inspired by the algo-
rithm proposed in [3] to train neural networks with binary
weights. During training we store and update a real-valued
version gr

c ∈ [0 , 1]M of the branch gates, with entries
clipped to lie in the continuous interval from 0 to 1.

In general, the training of a CNN consists of three
steps: 1) forward propagation, 2) backward propagation,
and 3) parameters update. We stochastically binarize the
real-valued branch gates into binary-valued vectors gb

c ∈
{0 , 1}M only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters
update (step 3), the method updates the real-valued branch
gates gr

c . The remaining weights of the convolutional and
fully connected layers are optimized using standard back-
propagation. In the next subsections we discuss in further
detail the gate training procedure, under the assumption that
at any time there can be only K active entries in the bi-
nary branch gate gb

c, where K is a predefined integer hyper-
parameter with 1 ≤ K ≤ M . In other words, we impose
the following constraints:

M∑

m=1

gbc,m = K, ∀c ∈ {1, . . . , C}

gbc,m ∈ {0 , 1}, ∀c ∈ {1, . . . , C} and ∀m ∈ {1, . . . ,M}.

These constraints imply that each classifier neuron in the
last layer receives input from exactly K branches. The en-
tire training procedure for the branch gates is summarized
in Algorithm 1 and discussed in detail below.

Branch Gates: Forward Propagation

During the forward propagation, our algorithm first nor-
malizes the current M real-valued branch gates grc,m for
each class c to sum up to 1. This is done so that
Mult(grc,1, grc,2, . . . , grc,M) defines a proper multinomial dis-
tribution over the M branch connections of the c-th neuron
classifier. Then, the binary branch gate gb

c is stochastically
generated by drawing K distinct samples i1, i2, . . . , iK ∈
{1, . . . ,M} from the multinomial distribution over the
branch connections. Then, the entries corresponding to the

K samples are activated in the binary branch gate vector,
i.e., gbc,ik ← 1, for k = 1, ...,K. The input activation vol-
ume to the neuron classifier for each class c is then com-
puted according to Eq. 1 from the sampled binary branch
gates and the final prediction is obtained.

We have also experimented with a deterministic proce-
dure that sets the active branch connections in gb

c to corre-
spond to the K largest values in gr

c . However, we found that
this often causes the binary gate vector gb

c to remain stuck at
the initial configuration. As also reported in [3], we found
the stochastic assignment of binary gates according to the
real-valued probabilities to yield much better performance.
In all our experiments we initialize the real-valued scalar
branch gates grc,m to 0 .5 . This allows the training procedure
to explore different connections in the first few iterations.

Branch Gates: Backward Propagation

In the backward propagation step, our method first com-
putes the gradient of the mini-batch loss with respect to
the input volume of each neuron classifier, i.e., ∂ℓ

∂Fc
. Then,

the gradient ∂ℓ
∂Em

with respect to each branch output is ob-
tained via back-propagation from ∂ℓ

∂Fc
and the current bi-

nary branch gates gbc,m.

Branch Gates: Parameters Update

As shown in Algorithm 1, in the parameter update step our
algorithm computes the gradient with respect to the binary
branch gates for each branch. Then, using these computed
gradients and the given learning rate, it updates the real-
valued branch gates via gradient descent. At this time we
clip the updated real-valued branch gates to constrain them
to remain within the valid interval [0 , 1]. The same clipping
strategy was adopted for the binary weights in the work of
Courbariaux et al. [3].

3.3. Inference with BRANCHCONNECT

In order to perform test-time inference on new samples
given a trained model with real-valued branch gates gr

c , we
adopt a deterministic strategy, rather than the stochastic ap-
proach used during training. We simply set to 1 the entries
of gb

c that correspond to the largest K values of gr
c , and

leave all other entries set to 0.
We have also experimented with using the non-binary

gates gr
c for inference at test time but found this approach

to yield much lower performance. This is understandable
given that the learning objective is computed and minimized
using binary rather real-valued gates.

4. Experiments
We demonstrate the effectiveness and the generality of

our approach by presenting experiments using BRANCHCON-

1247

Figure 1: The architecture of BRANCHCONNECT for classifi-
cation of C classes. The branches implement M < C par-
allel feature extractors. Class-specific gates connect the M
branches to the C classes in the last fully-connected layer.

networks, which have been adopted in previous work to ad-
dress a wide array of tasks ranging from combining decision
trees with convolutional networks [13], to autoencoding [9]
as well as feature pooling [16].

3. Technical Approach
In this section we present our proposed technical ap-

proach. We begin by introducing the notation that will
be used throughout this paper. We assume we are given
a training dataset D of N class-labeled images: D =
{(x1, y1), . . . , (xN , yN)} where xi represents the i-th RGB
image and yi ∈ {1 , . . . , C} denotes its associated class la-
bel, with C indicating the total number of classes.

In subsection 3.1 we describe the architecture of BRANCH-
CONNECT. In subsection 3.2 and subsection 3.3 we discuss
the training and inference procedures, respectively.

3.1. The architecture of BRANCHCONNECT

The architecture of BRANCHCONNECT is a tree-structured
network, as illustrated in Figure 1. It consists of a stem that
splits into M < C branches, where M is a hyper-parameter
that controls the complexity of our model. The stem con-
sists of a sequence of convolutional layers possibly inter-
leaved by pooling layers. Each branch contains one or more
convolutional/pooling layers, followed by zero, one or more
fully-connected layers (in our experiments we present re-
sults for a variety of models). The branches have identical
architecture but different parameters. The BRANCHCONNECT

model culminates into a fully-connected layer of C neurons
using the softmax activation function to define a proper dis-

tribution over the C classes to discriminate. This last layer
takes as input the activations from the M branches and it
is equivalent in role to the last fully-connected layer of a
traditional CNN for categorization. However, in BRANCH-
CONNECT each of these C neurons has a dedicated branch
gate that controls the input effectively fed to the neuron.
More specifically, let us consider the c-th neuron in the last
fully-connected layer of C units. We refer to this neuron
as the neuron classifier of class c, since it is responsible for
computing the probability that the input image belongs to
class c. The branch gate of this class is a learned binary
vector gb

c =
[
gbc,1, g

b
c,2, . . . , g

b
c,M

]⊤ ∈ {0 , 1}M specifying
the branches taken into consideration by the neuron classi-
fier to predict the probability of class c. If gbc,m = 1 , then
the activation volume produced by the m-th branch is fed as
input to the neuron of class c. If gbc,m = 0 , then the compu-
tation from the m-th branch is ignored by the classifier for
class c. Thus, if we denote with Em the output activation
tensor computed by the last layer of the m-th branch, the
input Fc to the c-th neuron will be given by the following
equation:

Fc =
M∑

m=1

gbc,m · Em (1)

The interpretation is that the branch gate gb
c adds selec-

tively the information from the M branches by choosing the
branches that are most salient for the classification of class
c. Under this scheme, each branch can therefore special-
ize to compute features that are relevant only to a subset of
the classes. We also point out that depending on the con-
straints posed over gb

c, different interesting models can be
realized. For example, by introducing the constraint that∑

m gbc,m = 1 , only one branch will be active for each neu-
ron c (since gbc,m must be either 0 or 1). Such a model would
effectively partition the set of C classes into M disjoint
clusters, where branch m is trained to discriminate among
the classes in cluster m. It can be noted that at the other
end of the spectrum, if we set gbc,m = 1 for all branches m
and classes c, then all classifiers in the last layer would be
operating on the same input. In our experiments we will
demonstrate that the best results are achieved for a mid-
dle ground between these two extremes, i.e., by connecting
each neuron classifier to exactly K branches where K is a
cross-validated hyper-parameter such that 1 < K < M .
As discussed in the next section, the gate gb

c of each class
c is learned simultaneously with all the other weights in the
network via backpropagation.

We point out that Eq. 1 uses additive selective fusion of
the output produced by the branches. We have also tried
stacking (rather than adding) the feature maps of the ac-
tive branches but this increases by a multiplicative factor
the parameters in the last layer and in our experiments this
approach produced results inferior to the additive scheme.

1246

: the cth neuron in the last fully connected layer

: mth branch activations

Figure 1: The architecture of BRANCHCONNECT for classifi-
cation of C classes. The branches implement M < C par-
allel feature extractors. Class-specific gates connect the M
branches to the C classes in the last fully-connected layer.

networks, which have been adopted in previous work to ad-
dress a wide array of tasks ranging from combining decision
trees with convolutional networks [13], to autoencoding [9]
as well as feature pooling [16].

3. Technical Approach
In this section we present our proposed technical ap-

proach. We begin by introducing the notation that will
be used throughout this paper. We assume we are given
a training dataset D of N class-labeled images: D =
{(x1, y1), . . . , (xN , yN)} where xi represents the i-th RGB
image and yi ∈ {1 , . . . , C} denotes its associated class la-
bel, with C indicating the total number of classes.

In subsection 3.1 we describe the architecture of BRANCH-
CONNECT. In subsection 3.2 and subsection 3.3 we discuss
the training and inference procedures, respectively.

3.1. The architecture of BRANCHCONNECT

The architecture of BRANCHCONNECT is a tree-structured
network, as illustrated in Figure 1. It consists of a stem that
splits into M < C branches, where M is a hyper-parameter
that controls the complexity of our model. The stem con-
sists of a sequence of convolutional layers possibly inter-
leaved by pooling layers. Each branch contains one or more
convolutional/pooling layers, followed by zero, one or more
fully-connected layers (in our experiments we present re-
sults for a variety of models). The branches have identical
architecture but different parameters. The BRANCHCONNECT

model culminates into a fully-connected layer of C neurons
using the softmax activation function to define a proper dis-

tribution over the C classes to discriminate. This last layer
takes as input the activations from the M branches and it
is equivalent in role to the last fully-connected layer of a
traditional CNN for categorization. However, in BRANCH-
CONNECT each of these C neurons has a dedicated branch
gate that controls the input effectively fed to the neuron.
More specifically, let us consider the c-th neuron in the last
fully-connected layer of C units. We refer to this neuron
as the neuron classifier of class c, since it is responsible for
computing the probability that the input image belongs to
class c. The branch gate of this class is a learned binary
vector gb

c =
[
gbc,1, g

b
c,2, . . . , g

b
c,M

]⊤ ∈ {0 , 1}M specifying
the branches taken into consideration by the neuron classi-
fier to predict the probability of class c. If gbc,m = 1 , then
the activation volume produced by the m-th branch is fed as
input to the neuron of class c. If gbc,m = 0 , then the compu-
tation from the m-th branch is ignored by the classifier for
class c. Thus, if we denote with Em the output activation
tensor computed by the last layer of the m-th branch, the
input Fc to the c-th neuron will be given by the following
equation:

Fc =
M∑

m=1

gbc,m · Em (1)

The interpretation is that the branch gate gb
c adds selec-

tively the information from the M branches by choosing the
branches that are most salient for the classification of class
c. Under this scheme, each branch can therefore special-
ize to compute features that are relevant only to a subset of
the classes. We also point out that depending on the con-
straints posed over gb

c, different interesting models can be
realized. For example, by introducing the constraint that∑

m gbc,m = 1 , only one branch will be active for each neu-
ron c (since gbc,m must be either 0 or 1). Such a model would
effectively partition the set of C classes into M disjoint
clusters, where branch m is trained to discriminate among
the classes in cluster m. It can be noted that at the other
end of the spectrum, if we set gbc,m = 1 for all branches m
and classes c, then all classifiers in the last layer would be
operating on the same input. In our experiments we will
demonstrate that the best results are achieved for a mid-
dle ground between these two extremes, i.e., by connecting
each neuron classifier to exactly K branches where K is a
cross-validated hyper-parameter such that 1 < K < M .
As discussed in the next section, the gate gb

c of each class
c is learned simultaneously with all the other weights in the
network via backpropagation.

We point out that Eq. 1 uses additive selective fusion of
the output produced by the branches. We have also tried
stacking (rather than adding) the feature maps of the ac-
tive branches but this increases by a multiplicative factor
the parameters in the last layer and in our experiments this
approach produced results inferior to the additive scheme.

1246

Figure 1: The architecture of BRANCHCONNECT for classifi-
cation of C classes. The branches implement M < C par-
allel feature extractors. Class-specific gates connect the M
branches to the C classes in the last fully-connected layer.

networks, which have been adopted in previous work to ad-
dress a wide array of tasks ranging from combining decision
trees with convolutional networks [13], to autoencoding [9]
as well as feature pooling [16].

3. Technical Approach
In this section we present our proposed technical ap-

proach. We begin by introducing the notation that will
be used throughout this paper. We assume we are given
a training dataset D of N class-labeled images: D =
{(x1, y1), . . . , (xN , yN)} where xi represents the i-th RGB
image and yi ∈ {1 , . . . , C} denotes its associated class la-
bel, with C indicating the total number of classes.

In subsection 3.1 we describe the architecture of BRANCH-
CONNECT. In subsection 3.2 and subsection 3.3 we discuss
the training and inference procedures, respectively.

3.1. The architecture of BRANCHCONNECT

The architecture of BRANCHCONNECT is a tree-structured
network, as illustrated in Figure 1. It consists of a stem that
splits into M < C branches, where M is a hyper-parameter
that controls the complexity of our model. The stem con-
sists of a sequence of convolutional layers possibly inter-
leaved by pooling layers. Each branch contains one or more
convolutional/pooling layers, followed by zero, one or more
fully-connected layers (in our experiments we present re-
sults for a variety of models). The branches have identical
architecture but different parameters. The BRANCHCONNECT

model culminates into a fully-connected layer of C neurons
using the softmax activation function to define a proper dis-

tribution over the C classes to discriminate. This last layer
takes as input the activations from the M branches and it
is equivalent in role to the last fully-connected layer of a
traditional CNN for categorization. However, in BRANCH-
CONNECT each of these C neurons has a dedicated branch
gate that controls the input effectively fed to the neuron.
More specifically, let us consider the c-th neuron in the last
fully-connected layer of C units. We refer to this neuron
as the neuron classifier of class c, since it is responsible for
computing the probability that the input image belongs to
class c. The branch gate of this class is a learned binary
vector gb

c =
[
gbc,1, g

b
c,2, . . . , g

b
c,M

]⊤ ∈ {0 , 1}M specifying
the branches taken into consideration by the neuron classi-
fier to predict the probability of class c. If gbc,m = 1 , then
the activation volume produced by the m-th branch is fed as
input to the neuron of class c. If gbc,m = 0 , then the compu-
tation from the m-th branch is ignored by the classifier for
class c. Thus, if we denote with Em the output activation
tensor computed by the last layer of the m-th branch, the
input Fc to the c-th neuron will be given by the following
equation:

Fc =
M∑

m=1

gbc,m · Em (1)

The interpretation is that the branch gate gb
c adds selec-

tively the information from the M branches by choosing the
branches that are most salient for the classification of class
c. Under this scheme, each branch can therefore special-
ize to compute features that are relevant only to a subset of
the classes. We also point out that depending on the con-
straints posed over gb

c, different interesting models can be
realized. For example, by introducing the constraint that∑

m gbc,m = 1 , only one branch will be active for each neu-
ron c (since gbc,m must be either 0 or 1). Such a model would
effectively partition the set of C classes into M disjoint
clusters, where branch m is trained to discriminate among
the classes in cluster m. It can be noted that at the other
end of the spectrum, if we set gbc,m = 1 for all branches m
and classes c, then all classifiers in the last layer would be
operating on the same input. In our experiments we will
demonstrate that the best results are achieved for a mid-
dle ground between these two extremes, i.e., by connecting
each neuron classifier to exactly K branches where K is a
cross-validated hyper-parameter such that 1 < K < M .
As discussed in the next section, the gate gb

c of each class
c is learned simultaneously with all the other weights in the
network via backpropagation.

We point out that Eq. 1 uses additive selective fusion of
the output produced by the branches. We have also tried
stacking (rather than adding) the feature maps of the ac-
tive branches but this increases by a multiplicative factor
the parameters in the last layer and in our experiments this
approach produced results inferior to the additive scheme.

1246

Parameter update:
Compute , and update real-valued masks

Algorithm 1 Training Branch Gates with BRANCHCONNECT.
Input: a minibatch of labeled examples (xi, yi), C: number of classes,
M : number of branches, K: the number of active branch connections
per class, η: learning rate, ℓ: the loss over the minibatch, gr

c ∈ [0 , 1]M :
real-valued branch gates from previous training iteration.
Output: updated gr

c , for all classes c = 1, . . . , C
1. Forward Propagation:
for c← 1 to C do

Normalize the real-valued branch gates of class c to sum up to 1:

grc,m ←
grc,m∑M

m′=1
gr
c,m′

, for m = 1, . . . ,M

Reset binary branch gates: gb
c ← 0

Draw K distinct samples from multinomial branch gate distribution:
i1, i2, . . . , iK ← Mult(grc,1, g

r
c,2, . . . , g

r
c,M)

Set active binary branch gates based on drawn samples:
gbc,ik ← 1 for k = 1, ...,K
Compute input Fc to the c-th neuron, given branch activations Em:
Fc ←

∑M
m=1 g

b
c,m · Em

end for
2. Backward Propagation:
for c← 1 to C do

Compute ∂ℓ
∂Fc

from ℓ and neuron classifier parameters
Compute ∂ℓ

∂Em
given ∂ℓ

∂Fc
, gbc,m for m = 1, ...,M

end for
2. Parameter Update:
for c← 1 to C do

Compute ∂ℓ
∂gbc,m

given ∂ℓ
∂Fc

and Em, for m = 1, ...,M

grc,m ← clip(grc,m − η · ∂ℓ
∂gbc,m

) for m = 1, ...,M

end for

NECT models built from different CNN architectures on four
different datasets: CIFAR-100 [14], CIFAR-10 [14], Ima-
geNet [4], and the Synthetic Word Dataset (Synth) [11, 10].

4.1. Reshaping a traditional CNN into a multi-
branch net with BRANCHCONNECT

In order to show the benefits of BRANCHCONNECT we
present results obtained by reshaping several traditional
CNNs from the literature into the form of our multi-branch
architecture. We refer to the original architectures as the
base models. Note that our approach requires only the spec-
ification of the base CNN architecture, i.e., no pre-trained
parameters are needed.

We evaluate a simple, single recipe to reshape each base
model into an BRANCHCONNECT network. Let Pc be the total
number of convolutional/pooling layers of the base model,
and Pf the number of fully-connected layers following the
convolutional/pooling layers. The stem of BRANCHCONNECT

is formed by using Pc−1 convolutional/pooling layers iden-
tical in specifications to the first Pc − 1 layers of the base
model. Then, we place in each branch the remaining con-
volutional layer of the base model followed by Pf − 1 fully
connected layers identical in specifications to the first Pf−1
fully connected layers of the base models (i.e, all fc layers
except the last one). The M branches have identical archi-
tecture but distinct parameters. Then, we place a final fully

connected layer of size C at the top. This layer is shared
among all branches and is responsible for the final predic-
tion. Neuron c in this layer is connected through learned
gate gb

c to the last layer of the M branches (see Figure 1).

4.2. CIFAR-100
CIFAR-100 is a dataset of 32x32 color images spanning

C = 100 classes. The training set contains 50,000 examples
and the test set includes 10,000 images. We use this dataset
to conduct a comprehensive study using different network
architectures and settings.

4.2.1 Accuracy Gain for Different Architectures

We begin by showing that BRANCHCONNECT yields consis-
tent improvements irrespective of the specific architecture.
To demonstrate this, we take five distinct architectures from
prior work [7, 25, 1] and reshape them as BRANCHCONNECT.

The architectures are listed below (full specifications are
listed in the supplementary material). For this preliminary
set of experiments we fix the number of BRANCHCONNECT

branches M to 10. For each architecture, we train 10 sepa-
rate models for values of K (the number of active branches
per class) ranging from 1 to 10. As already discussed in
section 3, we build the BRANCHCONNECT network from each
base model by placing all convolutional layers except the
last one in the stem. Each branch then contains one convo-
lutional layer (identical in specifications to the last convolu-
tional layer of the base model) followed by fully-connected
layers (identical to those in the base model), except for the
last one. The last fully-connected layer is shared among all
branches. (see Figure 1).

Here are the five base models for this experiment:
1) AlexNet-Quick. This is a slightly modified version of
the AlexNet model [15] adapted by Ahmed et al [1] to
work on the 32x32 images of CIFAR-100. It consists of
3 convolutional layers and 2 fully-connected layers. Thus,
our BRANCHCONNECT net constructed from AlexNet-Quick in-
cludes two convolutional layers in the stem, while each
branch contains one convolutional layer with the same spec-
ification as the third convolutional layer in the base model
and one fully-connected layer.
2) AlexNet-Full. This model is also taken from [1]. This
base CNN is slightly different from AlexNet-Quick as it has
only one fully-connected layer instead of two layers, and
it uses local response normalization layers. The accuracy
of this base model is higher than AlexNet-Quick. The cor-
responding BRANCHCONNECT model consists of a stem that
contains the first two convolutional layers. Each branch
consists of only one convolutional layer with the same spec-
ification as the third convolutional layer in the base model.
3) NIN. This model is a “Network In Network” (NIN) [17].
NIN models do not use fully-connected layers. Instead, they

1248

Algorithm 1 Training Branch Gates with BRANCHCONNECT.
Input: a minibatch of labeled examples (xi, yi), C: number of classes,
M : number of branches, K: the number of active branch connections
per class, η: learning rate, ℓ: the loss over the minibatch, gr

c ∈ [0 , 1]M :
real-valued branch gates from previous training iteration.
Output: updated gr

c , for all classes c = 1, . . . , C
1. Forward Propagation:
for c← 1 to C do

Normalize the real-valued branch gates of class c to sum up to 1:

grc,m ←
grc,m∑M

m′=1
gr
c,m′

, for m = 1, . . . ,M

Reset binary branch gates: gb
c ← 0

Draw K distinct samples from multinomial branch gate distribution:
i1, i2, . . . , iK ← Mult(grc,1, g

r
c,2, . . . , g

r
c,M)

Set active binary branch gates based on drawn samples:
gbc,ik ← 1 for k = 1, ...,K
Compute input Fc to the c-th neuron, given branch activations Em:
Fc ←

∑M
m=1 g

b
c,m · Em

end for
2. Backward Propagation:
for c← 1 to C do

Compute ∂ℓ
∂Fc

from ℓ and neuron classifier parameters
Compute ∂ℓ

∂Em
given ∂ℓ

∂Fc
, gbc,m for m = 1, ...,M

end for
2. Parameter Update:
for c← 1 to C do

Compute ∂ℓ
∂gbc,m

given ∂ℓ
∂Fc

and Em, for m = 1, ...,M

grc,m ← clip(grc,m − η · ∂ℓ
∂gbc,m

) for m = 1, ...,M

end for

NECT models built from different CNN architectures on four
different datasets: CIFAR-100 [14], CIFAR-10 [14], Ima-
geNet [4], and the Synthetic Word Dataset (Synth) [11, 10].

4.1. Reshaping a traditional CNN into a multi-
branch net with BRANCHCONNECT

In order to show the benefits of BRANCHCONNECT we
present results obtained by reshaping several traditional
CNNs from the literature into the form of our multi-branch
architecture. We refer to the original architectures as the
base models. Note that our approach requires only the spec-
ification of the base CNN architecture, i.e., no pre-trained
parameters are needed.

We evaluate a simple, single recipe to reshape each base
model into an BRANCHCONNECT network. Let Pc be the total
number of convolutional/pooling layers of the base model,
and Pf the number of fully-connected layers following the
convolutional/pooling layers. The stem of BRANCHCONNECT

is formed by using Pc−1 convolutional/pooling layers iden-
tical in specifications to the first Pc − 1 layers of the base
model. Then, we place in each branch the remaining con-
volutional layer of the base model followed by Pf − 1 fully
connected layers identical in specifications to the first Pf−1
fully connected layers of the base models (i.e, all fc layers
except the last one). The M branches have identical archi-
tecture but distinct parameters. Then, we place a final fully

connected layer of size C at the top. This layer is shared
among all branches and is responsible for the final predic-
tion. Neuron c in this layer is connected through learned
gate gb

c to the last layer of the M branches (see Figure 1).

4.2. CIFAR-100
CIFAR-100 is a dataset of 32x32 color images spanning

C = 100 classes. The training set contains 50,000 examples
and the test set includes 10,000 images. We use this dataset
to conduct a comprehensive study using different network
architectures and settings.

4.2.1 Accuracy Gain for Different Architectures

We begin by showing that BRANCHCONNECT yields consis-
tent improvements irrespective of the specific architecture.
To demonstrate this, we take five distinct architectures from
prior work [7, 25, 1] and reshape them as BRANCHCONNECT.

The architectures are listed below (full specifications are
listed in the supplementary material). For this preliminary
set of experiments we fix the number of BRANCHCONNECT

branches M to 10. For each architecture, we train 10 sepa-
rate models for values of K (the number of active branches
per class) ranging from 1 to 10. As already discussed in
section 3, we build the BRANCHCONNECT network from each
base model by placing all convolutional layers except the
last one in the stem. Each branch then contains one convo-
lutional layer (identical in specifications to the last convolu-
tional layer of the base model) followed by fully-connected
layers (identical to those in the base model), except for the
last one. The last fully-connected layer is shared among all
branches. (see Figure 1).

Here are the five base models for this experiment:
1) AlexNet-Quick. This is a slightly modified version of
the AlexNet model [15] adapted by Ahmed et al [1] to
work on the 32x32 images of CIFAR-100. It consists of
3 convolutional layers and 2 fully-connected layers. Thus,
our BRANCHCONNECT net constructed from AlexNet-Quick in-
cludes two convolutional layers in the stem, while each
branch contains one convolutional layer with the same spec-
ification as the third convolutional layer in the base model
and one fully-connected layer.
2) AlexNet-Full. This model is also taken from [1]. This
base CNN is slightly different from AlexNet-Quick as it has
only one fully-connected layer instead of two layers, and
it uses local response normalization layers. The accuracy
of this base model is higher than AlexNet-Quick. The cor-
responding BRANCHCONNECT model consists of a stem that
contains the first two convolutional layers. Each branch
consists of only one convolutional layer with the same spec-
ification as the third convolutional layer in the base model.
3) NIN. This model is a “Network In Network” (NIN) [17].
NIN models do not use fully-connected layers. Instead, they

1248

Algorithm 1 Training Branch Gates with BRANCHCONNECT.
Input: a minibatch of labeled examples (xi, yi), C: number of classes,
M : number of branches, K: the number of active branch connections
per class, η: learning rate, ℓ: the loss over the minibatch, gr

c ∈ [0 , 1]M :
real-valued branch gates from previous training iteration.
Output: updated gr

c , for all classes c = 1, . . . , C
1. Forward Propagation:
for c← 1 to C do

Normalize the real-valued branch gates of class c to sum up to 1:

grc,m ←
grc,m∑M

m′=1
gr
c,m′

, for m = 1, . . . ,M

Reset binary branch gates: gb
c ← 0

Draw K distinct samples from multinomial branch gate distribution:
i1, i2, . . . , iK ← Mult(grc,1, g

r
c,2, . . . , g

r
c,M)

Set active binary branch gates based on drawn samples:
gbc,ik ← 1 for k = 1, ...,K
Compute input Fc to the c-th neuron, given branch activations Em:
Fc ←

∑M
m=1 g

b
c,m · Em

end for
2. Backward Propagation:
for c← 1 to C do

Compute ∂ℓ
∂Fc

from ℓ and neuron classifier parameters
Compute ∂ℓ

∂Em
given ∂ℓ

∂Fc
, gbc,m for m = 1, ...,M

end for
2. Parameter Update:
for c← 1 to C do

Compute ∂ℓ
∂gbc,m

given ∂ℓ
∂Fc

and Em, for m = 1, ...,M

grc,m ← clip(grc,m − η · ∂ℓ
∂gbc,m

) for m = 1, ...,M

end for

NECT models built from different CNN architectures on four
different datasets: CIFAR-100 [14], CIFAR-10 [14], Ima-
geNet [4], and the Synthetic Word Dataset (Synth) [11, 10].

4.1. Reshaping a traditional CNN into a multi-
branch net with BRANCHCONNECT

In order to show the benefits of BRANCHCONNECT we
present results obtained by reshaping several traditional
CNNs from the literature into the form of our multi-branch
architecture. We refer to the original architectures as the
base models. Note that our approach requires only the spec-
ification of the base CNN architecture, i.e., no pre-trained
parameters are needed.

We evaluate a simple, single recipe to reshape each base
model into an BRANCHCONNECT network. Let Pc be the total
number of convolutional/pooling layers of the base model,
and Pf the number of fully-connected layers following the
convolutional/pooling layers. The stem of BRANCHCONNECT

is formed by using Pc−1 convolutional/pooling layers iden-
tical in specifications to the first Pc − 1 layers of the base
model. Then, we place in each branch the remaining con-
volutional layer of the base model followed by Pf − 1 fully
connected layers identical in specifications to the first Pf−1
fully connected layers of the base models (i.e, all fc layers
except the last one). The M branches have identical archi-
tecture but distinct parameters. Then, we place a final fully

connected layer of size C at the top. This layer is shared
among all branches and is responsible for the final predic-
tion. Neuron c in this layer is connected through learned
gate gb

c to the last layer of the M branches (see Figure 1).

4.2. CIFAR-100
CIFAR-100 is a dataset of 32x32 color images spanning

C = 100 classes. The training set contains 50,000 examples
and the test set includes 10,000 images. We use this dataset
to conduct a comprehensive study using different network
architectures and settings.

4.2.1 Accuracy Gain for Different Architectures

We begin by showing that BRANCHCONNECT yields consis-
tent improvements irrespective of the specific architecture.
To demonstrate this, we take five distinct architectures from
prior work [7, 25, 1] and reshape them as BRANCHCONNECT.

The architectures are listed below (full specifications are
listed in the supplementary material). For this preliminary
set of experiments we fix the number of BRANCHCONNECT

branches M to 10. For each architecture, we train 10 sepa-
rate models for values of K (the number of active branches
per class) ranging from 1 to 10. As already discussed in
section 3, we build the BRANCHCONNECT network from each
base model by placing all convolutional layers except the
last one in the stem. Each branch then contains one convo-
lutional layer (identical in specifications to the last convolu-
tional layer of the base model) followed by fully-connected
layers (identical to those in the base model), except for the
last one. The last fully-connected layer is shared among all
branches. (see Figure 1).

Here are the five base models for this experiment:
1) AlexNet-Quick. This is a slightly modified version of
the AlexNet model [15] adapted by Ahmed et al [1] to
work on the 32x32 images of CIFAR-100. It consists of
3 convolutional layers and 2 fully-connected layers. Thus,
our BRANCHCONNECT net constructed from AlexNet-Quick in-
cludes two convolutional layers in the stem, while each
branch contains one convolutional layer with the same spec-
ification as the third convolutional layer in the base model
and one fully-connected layer.
2) AlexNet-Full. This model is also taken from [1]. This
base CNN is slightly different from AlexNet-Quick as it has
only one fully-connected layer instead of two layers, and
it uses local response normalization layers. The accuracy
of this base model is higher than AlexNet-Quick. The cor-
responding BRANCHCONNECT model consists of a stem that
contains the first two convolutional layers. Each branch
consists of only one convolutional layer with the same spec-
ification as the third convolutional layer in the base model.
3) NIN. This model is a “Network In Network” (NIN) [17].
NIN models do not use fully-connected layers. Instead, they

1248

Figure 3: Evolution of train loss vs test loss during train-
ing on CIFAR-100. The training trajectory is from right to
left. BRANCHCONNECT yields lower test loss for the same train
loss compared to the base models and a net with randomly-
chosen active connections.

Figure 4: The effect of increasing the network depth on
test accuracy (using CIFAR-100). Boxes show the distribu-
tion of test accuracy values of the same model trained using
different initialization seeds. Left: base model (AlexNet-
Quick). Right: BRANCHCONNECT. Our model is less sensitive
to variations in the random initialization and yields stable
performance even for increased depth.

Table 2: Classification accuracy (%) on CIFAR-10 dataset.
G:K/M denotes K active connections out of a total of M .

Architecture Method Accuracy

AlexNet-Quick Base Model 76.86
BRANCHCONNECT G:3/5 82.84

AlexNet-Full Base Model 82.78
BRANCHCONNECT G:3/5 85.00

ResNet-56 [7] Base Model 92.04
BRANCHCONNECT G:3/5 92.46

4.4. ImageNet
We evaluate our approach on the ImageNet 2012 large-

scale classification dataset [4], which includes images of
1000 classes. The training set contains 1.28M images. We
use the validation set which consist of 50K images to eval-
uate the performance. In Table 3, we report the Top-1 accu-
racies of different models.

4.5. Synth dataset
Finally, we evaluate our approach on a text recognition

task using the Synth dataset [10]. The dataset contains a

Table 3: Top-1 single crop validation accuracy (%) on Ima-
geNet. G:K/M denotes K active connections out of M .

Architecture Method Accuracy

AlexNet [4] Base Model 58.71
NofE [1] 61.29
BRANCHCONNECT G:5/10 63.49

ResNet50 [7] Base Model [7] 76.15
BRANCHCONNECT G:5/10 77.39
BRANCHCONNECT G:8/15 77.68

ResNet101 [7] Base Model [7] 77.37
BRANCHCONNECT G:5/10 78.19

total of 9M images of size 32x100. Each image contains
a word drawn from a 90K dictionary. The dataset is di-
vided into 900K images for testing, 900K images for vali-
dation, and the remaining of the images are used for train-
ing. The recognition task is to classify each of the 900K
testing images into one of the 90K words (i.e., C = 90K).
The very large number of classes renders this dataset an in-
teresting benchmark to test our BRANCHCONNECT approach.
Our branched models are built from the base architecture
“DICT+2-90K” used by Jaderberg et al. [11]. This base ar-
chitecture has 5 convolutional layers and 3 fully-connected
layers. Due to the large number of the classes, the training
of these models was performed by adding the classes incre-
mentally as described in [11]. In Table 4 we show the test
accuracy of the base architecture and the BRANCHCONNECT

models. Additionally, we show the results of the models
learned from the Synth dataset when tested on other smaller
datasets: IC03 [19], SVT [23], and IC13 [12].

Table 4: Word recognition accuracy (%) for models trained
on Synth, using DICT+2-90k [11] as base model.

Model Test Dataset
Synth [10] IC03 [19] SVT [23] IC13 [12]

Base Model [10] 95.2 93.1 80.7 90.8
BRANCHCONNECT G:7/10 95.6 93.7 83.4 92.1

5. Conclusions
In this paper we presented BRANCHCONNECT—a multi-

branch, gated architecture that enables the learning of sepa-
rate features for each class in large-scale classification prob-
lems. The training of our approach is end-to-end and it is
posed as a single optimization that simultaneously learns
the network weights and the branch connections for each
class. We demonstrated the benefits of our method by adapt-
ing several popular CNNs into the form of BRANCHCON-
NECT. We also provided empirical analysis suggesting that
BRANCHCONNECT induces a beneficial form of regularization,
reducing overfitting and improving generalization.

Future work will focus on more sophisticated combina-
tion schemes. The learned gates in our model can be viewed
as performing a rudimentary form of architecture learning,
limited to the last layer. We plan to study the applicability of
this mechanism for more general forms of model learning.

1251

BranchConnect acts as regularizer

Table 1: Classification accuracy (%) (single crop) on
CIFAR-100 for 5 base architectures. BRANCHCONNECT uses
M = 10 branches. G:K/M means that each gate has K
active connections. We report performance for K = 1 and
when choosing the best value of K.1

Method depth #params Accuracy

A
le

xN
et

-Q
ui

ck Base Model V1 5 0.15M 44.3
Base Model V2 5 1.20M 40.26
NofE [1] 6 1.27M 49.09
BRANCHCONNECT G:1/10 5 1.20M 53.28
BRANCHCONNECT G:5/10 5 1.20M 54.62

A
le

xn
et

-F
ul

l Base Model V1 4 0.18M 54.04
Base Model V2 4 0.64M 50.42
NofE [1] 5 1.12M 56.24
BRANCHCONNECT G:1/10 4 0.64M 57.34
BRANCHCONNECT G:6/10 4 0.64M 60.27

N
IN

[1
7]

Base Model V1 9 1.38M 64.73
Base Model V2 9 1.61M 65.24
HD-CNN [25] n/a n/a 65.64
NofE [1] 11 4.66M 65.91
BRANCHCONNECT G:1/10 9 1.61M 66.10
BRANCHCONNECT G:5/10 9 1.61M 66.45

R
es

N
et

56
[7

] Base Model V1 56 0.86M 69.66
Base Model V2 56 1.47M 70.72
BRANCHCONNECT G:1/10 56 1.47M 71.24
BRANCHCONNECT G:5/10 56 1.47M 71.98

R
es

N
et

56
-4

X
[1

] Base Model V1 [1] 56 13.6M 72.23
Base Model V2 56 25.4M 73.12
NofE [1] 58 25.5M 74.71
BRANCHCONNECT G:1/10 56 25.4M 75.55
BRANCHCONNECT G:5/10 56 25.4M 75.72

employ as final layer a convolutional layer where the num-
ber of filters is equal to the number of classes (C). The final
prediction is obtained by performing global average pooling
over the feature maps of this layer. Thus, we build BRANCH-
CONNECT by placing in the stem all convolutional layers, ex-
cept the last two. Each branch then contains only one con-
volutional layer. Finally the branches are connected via our
binary gates to the final convolutional layer of C filters fol-
lowed by global average pooling for the final prediction.
4) ResNet56. This is the 56-layer residual network origi-
nally described in [7]. In the BRANCHCONNECT model, the
stem contains all the residual blocks except the last block
which is included in the branches. The final fully-connected
layer is shared among all branches.
5) ResNet56-4X. This model is identical in structure to
ResNet56 but it uses 4 times as many filters in each convo-
lutional layer and was shown in [1] to yield higher accuracy
on CIFAR-100.

1Note that some of the accuracies for NofE and Base Models listed here
differ slightly from those reported in [1]. The differences are merely due
to the fact that in [1] some of the architectures were tested using multiple
image crops, while our evaluation uses a single crop for all architectures.

The results achieved with these 5 architectures are shown
in Table 1. For each architecture, we report the accuracy
of the base model “Base Model V1” as well as that ob-
tained with our BRANCHCONNECT. We report two numbers
for BRANCHCONNECT: the first using only one active branch
per class (i.e., K = 1), the second obtained by choosing
the best value of K (ranging from 1 to 10) for each archi-
tecture. We also include for comparison the performance
achieved by Network of Experts (NofE) [1], which also
builds a branched architecture from the given base model.
However, NofE does so by performing hierarchical decom-
position of the classes using two separate training stages
and it connects each class to only one branch by construc-
tion. For the case of NIN, we also include the performance
reported in [25] for the hierarchical HD-CNN built from this
base model.

We can see from Table 1 that BRANCHCONNECT outper-
forms the base model “Base Model V1” for all five archi-
tectures. BRANCHCONNECT does also considerably better than
NofE [1] and HD-CNN [25], which are the most closely re-
lated approaches to our own. For all architecture the peak
performance of BRANCHCONNECT is achieved when setting
the number of active branches (K) to be greater than 1 (the
best accuracy is achieved with K = 6 for AlexNet-Full and
with K = 5 for the other four models).

It can be noted that BRANCHCONNECT involves more pa-
rameters than the base models “Base Model V1”. Thus,
one could argue that the improved performance of BRANCH-
CONNECT is merely the result of a larger learning capacity.
To disprove this hypothesis we report the results for another
version of the base models named “Base Model V2”. These
base models were built by increasing uniformly the number
of filters and the number of units in the convolutional lay-
ers and the first fully connected layer of “Base Model V1”
in order to match exactly the total number of parameters in
the BRANCHCONNECT models. BRANCHCONNECT with the same
number of parameters and overall depth achieves much bet-
ter accuracy than “Base Model V2”. In subsection 4.2.3
we will show that this is due to a regularization effect in-
duced by our architecture. In supplementary material we
also report results obtained by shrinking the numbers of pa-
rameters in BRANCHCONNECT to match those in the original
“Base Models V1”. Even in this scenario, BRANCHCONNECT

consistently outperforms the base models.

4.2.2 Varying the number of branches (M) and the
number of active connections (K)

In this subsection we study the effect of varying the num-
ber of branches (M) in addition to the number of active
connections (K). Due to lack of space, here we report
results only using the AlexNet-Quick base architecture but
we found the overall trend on this base model to general-

1249

[1]

[1]

[1]

[1]

[1]

[2]

[3
]

[4
]

[1
]

Table 1: Classification accuracy (%) (single crop) on
CIFAR-100 for 5 base architectures. BRANCHCONNECT uses
M = 10 branches. G:K/M means that each gate has K
active connections. We report performance for K = 1 and
when choosing the best value of K.1

Method depth #params Accuracy

A
le

xN
et

-Q
ui

ck Base Model V1 5 0.15M 44.3
Base Model V2 5 1.20M 40.26
NofE [1] 6 1.27M 49.09
BRANCHCONNECT G:1/10 5 1.20M 53.28
BRANCHCONNECT G:5/10 5 1.20M 54.62

A
le

xn
et

-F
ul

l Base Model V1 4 0.18M 54.04
Base Model V2 4 0.64M 50.42
NofE [1] 5 1.12M 56.24
BRANCHCONNECT G:1/10 4 0.64M 57.34
BRANCHCONNECT G:6/10 4 0.64M 60.27

N
IN

[1
7]

Base Model V1 9 1.38M 64.73
Base Model V2 9 1.61M 65.24
HD-CNN [25] n/a n/a 65.64
NofE [1] 11 4.66M 65.91
BRANCHCONNECT G:1/10 9 1.61M 66.10
BRANCHCONNECT G:5/10 9 1.61M 66.45

R
es

N
et

56
[7

] Base Model V1 56 0.86M 69.66
Base Model V2 56 1.47M 70.72
BRANCHCONNECT G:1/10 56 1.47M 71.24
BRANCHCONNECT G:5/10 56 1.47M 71.98

R
es

N
et

56
-4

X
[1

] Base Model V1 [1] 56 13.6M 72.23
Base Model V2 56 25.4M 73.12
NofE [1] 58 25.5M 74.71
BRANCHCONNECT G:1/10 56 25.4M 75.55
BRANCHCONNECT G:5/10 56 25.4M 75.72

employ as final layer a convolutional layer where the num-
ber of filters is equal to the number of classes (C). The final
prediction is obtained by performing global average pooling
over the feature maps of this layer. Thus, we build BRANCH-
CONNECT by placing in the stem all convolutional layers, ex-
cept the last two. Each branch then contains only one con-
volutional layer. Finally the branches are connected via our
binary gates to the final convolutional layer of C filters fol-
lowed by global average pooling for the final prediction.
4) ResNet56. This is the 56-layer residual network origi-
nally described in [7]. In the BRANCHCONNECT model, the
stem contains all the residual blocks except the last block
which is included in the branches. The final fully-connected
layer is shared among all branches.
5) ResNet56-4X. This model is identical in structure to
ResNet56 but it uses 4 times as many filters in each convo-
lutional layer and was shown in [1] to yield higher accuracy
on CIFAR-100.

1Note that some of the accuracies for NofE and Base Models listed here
differ slightly from those reported in [1]. The differences are merely due
to the fact that in [1] some of the architectures were tested using multiple
image crops, while our evaluation uses a single crop for all architectures.

The results achieved with these 5 architectures are shown
in Table 1. For each architecture, we report the accuracy
of the base model “Base Model V1” as well as that ob-
tained with our BRANCHCONNECT. We report two numbers
for BRANCHCONNECT: the first using only one active branch
per class (i.e., K = 1), the second obtained by choosing
the best value of K (ranging from 1 to 10) for each archi-
tecture. We also include for comparison the performance
achieved by Network of Experts (NofE) [1], which also
builds a branched architecture from the given base model.
However, NofE does so by performing hierarchical decom-
position of the classes using two separate training stages
and it connects each class to only one branch by construc-
tion. For the case of NIN, we also include the performance
reported in [25] for the hierarchical HD-CNN built from this
base model.

We can see from Table 1 that BRANCHCONNECT outper-
forms the base model “Base Model V1” for all five archi-
tectures. BRANCHCONNECT does also considerably better than
NofE [1] and HD-CNN [25], which are the most closely re-
lated approaches to our own. For all architecture the peak
performance of BRANCHCONNECT is achieved when setting
the number of active branches (K) to be greater than 1 (the
best accuracy is achieved with K = 6 for AlexNet-Full and
with K = 5 for the other four models).

It can be noted that BRANCHCONNECT involves more pa-
rameters than the base models “Base Model V1”. Thus,
one could argue that the improved performance of BRANCH-
CONNECT is merely the result of a larger learning capacity.
To disprove this hypothesis we report the results for another
version of the base models named “Base Model V2”. These
base models were built by increasing uniformly the number
of filters and the number of units in the convolutional lay-
ers and the first fully connected layer of “Base Model V1”
in order to match exactly the total number of parameters in
the BRANCHCONNECT models. BRANCHCONNECT with the same
number of parameters and overall depth achieves much bet-
ter accuracy than “Base Model V2”. In subsection 4.2.3
we will show that this is due to a regularization effect in-
duced by our architecture. In supplementary material we
also report results obtained by shrinking the numbers of pa-
rameters in BRANCHCONNECT to match those in the original
“Base Models V1”. Even in this scenario, BRANCHCONNECT

consistently outperforms the base models.

4.2.2 Varying the number of branches (M) and the
number of active connections (K)

In this subsection we study the effect of varying the num-
ber of branches (M) in addition to the number of active
connections (K). Due to lack of space, here we report
results only using the AlexNet-Quick base architecture but
we found the overall trend on this base model to general-

1249

[1]

[1]

[1]

[1]

[1]

[2]

[3
]

[4
]

[1
]

Figure 3: Evolution of train loss vs test loss during train-
ing on CIFAR-100. The training trajectory is from right to
left. BRANCHCONNECT yields lower test loss for the same train
loss compared to the base models and a net with randomly-
chosen active connections.

Figure 4: The effect of increasing the network depth on
test accuracy (using CIFAR-100). Boxes show the distribu-
tion of test accuracy values of the same model trained using
different initialization seeds. Left: base model (AlexNet-
Quick). Right: BRANCHCONNECT. Our model is less sensitive
to variations in the random initialization and yields stable
performance even for increased depth.

Table 2: Classification accuracy (%) on CIFAR-10 dataset.
G:K/M denotes K active connections out of a total of M .

Architecture Method Accuracy

AlexNet-Quick Base Model 76.86
BRANCHCONNECT G:3/5 82.84

AlexNet-Full Base Model 82.78
BRANCHCONNECT G:3/5 85.00

ResNet-56 [7] Base Model 92.04
BRANCHCONNECT G:3/5 92.46

4.4. ImageNet
We evaluate our approach on the ImageNet 2012 large-

scale classification dataset [4], which includes images of
1000 classes. The training set contains 1.28M images. We
use the validation set which consist of 50K images to eval-
uate the performance. In Table 3, we report the Top-1 accu-
racies of different models.

4.5. Synth dataset
Finally, we evaluate our approach on a text recognition

task using the Synth dataset [10]. The dataset contains a

Table 3: Top-1 single crop validation accuracy (%) on Ima-
geNet. G:K/M denotes K active connections out of M .

Architecture Method Accuracy

AlexNet [4] Base Model 58.71
NofE [1] 61.29
BRANCHCONNECT G:5/10 63.49

ResNet50 [7] Base Model [7] 76.15
BRANCHCONNECT G:5/10 77.39
BRANCHCONNECT G:8/15 77.68

ResNet101 [7] Base Model [7] 77.37
BRANCHCONNECT G:5/10 78.19

total of 9M images of size 32x100. Each image contains
a word drawn from a 90K dictionary. The dataset is di-
vided into 900K images for testing, 900K images for vali-
dation, and the remaining of the images are used for train-
ing. The recognition task is to classify each of the 900K
testing images into one of the 90K words (i.e., C = 90K).
The very large number of classes renders this dataset an in-
teresting benchmark to test our BRANCHCONNECT approach.
Our branched models are built from the base architecture
“DICT+2-90K” used by Jaderberg et al. [11]. This base ar-
chitecture has 5 convolutional layers and 3 fully-connected
layers. Due to the large number of the classes, the training
of these models was performed by adding the classes incre-
mentally as described in [11]. In Table 4 we show the test
accuracy of the base architecture and the BRANCHCONNECT

models. Additionally, we show the results of the models
learned from the Synth dataset when tested on other smaller
datasets: IC03 [19], SVT [23], and IC13 [12].

Table 4: Word recognition accuracy (%) for models trained
on Synth, using DICT+2-90k [11] as base model.

Model Test Dataset
Synth [10] IC03 [19] SVT [23] IC13 [12]

Base Model [10] 95.2 93.1 80.7 90.8
BRANCHCONNECT G:7/10 95.6 93.7 83.4 92.1

5. Conclusions
In this paper we presented BRANCHCONNECT—a multi-

branch, gated architecture that enables the learning of sepa-
rate features for each class in large-scale classification prob-
lems. The training of our approach is end-to-end and it is
posed as a single optimization that simultaneously learns
the network weights and the branch connections for each
class. We demonstrated the benefits of our method by adapt-
ing several popular CNNs into the form of BRANCHCON-
NECT. We also provided empirical analysis suggesting that
BRANCHCONNECT induces a beneficial form of regularization,
reducing overfitting and improving generalization.

Future work will focus on more sophisticated combina-
tion schemes. The learned gates in our model can be viewed
as performing a rudimentary form of architecture learning,
limited to the last layer. We plan to study the applicability of
this mechanism for more general forms of model learning.

1251

[4]
Figure 3: Evolution of train loss vs test loss during train-
ing on CIFAR-100. The training trajectory is from right to
left. BRANCHCONNECT yields lower test loss for the same train
loss compared to the base models and a net with randomly-
chosen active connections.

Figure 4: The effect of increasing the network depth on
test accuracy (using CIFAR-100). Boxes show the distribu-
tion of test accuracy values of the same model trained using
different initialization seeds. Left: base model (AlexNet-
Quick). Right: BRANCHCONNECT. Our model is less sensitive
to variations in the random initialization and yields stable
performance even for increased depth.

Table 2: Classification accuracy (%) on CIFAR-10 dataset.
G:K/M denotes K active connections out of a total of M .

Architecture Method Accuracy

AlexNet-Quick Base Model 76.86
BRANCHCONNECT G:3/5 82.84

AlexNet-Full Base Model 82.78
BRANCHCONNECT G:3/5 85.00

ResNet-56 [7] Base Model 92.04
BRANCHCONNECT G:3/5 92.46

4.4. ImageNet
We evaluate our approach on the ImageNet 2012 large-

scale classification dataset [4], which includes images of
1000 classes. The training set contains 1.28M images. We
use the validation set which consist of 50K images to eval-
uate the performance. In Table 3, we report the Top-1 accu-
racies of different models.

4.5. Synth dataset
Finally, we evaluate our approach on a text recognition

task using the Synth dataset [10]. The dataset contains a

Table 3: Top-1 single crop validation accuracy (%) on Ima-
geNet. G:K/M denotes K active connections out of M .

Architecture Method Accuracy

AlexNet [4] Base Model 58.71
NofE [1] 61.29
BRANCHCONNECT G:5/10 63.49

ResNet50 [7] Base Model [7] 76.15
BRANCHCONNECT G:5/10 77.39
BRANCHCONNECT G:8/15 77.68

ResNet101 [7] Base Model [7] 77.37
BRANCHCONNECT G:5/10 78.19

total of 9M images of size 32x100. Each image contains
a word drawn from a 90K dictionary. The dataset is di-
vided into 900K images for testing, 900K images for vali-
dation, and the remaining of the images are used for train-
ing. The recognition task is to classify each of the 900K
testing images into one of the 90K words (i.e., C = 90K).
The very large number of classes renders this dataset an in-
teresting benchmark to test our BRANCHCONNECT approach.
Our branched models are built from the base architecture
“DICT+2-90K” used by Jaderberg et al. [11]. This base ar-
chitecture has 5 convolutional layers and 3 fully-connected
layers. Due to the large number of the classes, the training
of these models was performed by adding the classes incre-
mentally as described in [11]. In Table 4 we show the test
accuracy of the base architecture and the BRANCHCONNECT

models. Additionally, we show the results of the models
learned from the Synth dataset when tested on other smaller
datasets: IC03 [19], SVT [23], and IC13 [12].

Table 4: Word recognition accuracy (%) for models trained
on Synth, using DICT+2-90k [11] as base model.

Model Test Dataset
Synth [10] IC03 [19] SVT [23] IC13 [12]

Base Model [10] 95.2 93.1 80.7 90.8
BRANCHCONNECT G:7/10 95.6 93.7 83.4 92.1

5. Conclusions
In this paper we presented BRANCHCONNECT—a multi-

branch, gated architecture that enables the learning of sepa-
rate features for each class in large-scale classification prob-
lems. The training of our approach is end-to-end and it is
posed as a single optimization that simultaneously learns
the network weights and the branch connections for each
class. We demonstrated the benefits of our method by adapt-
ing several popular CNNs into the form of BRANCHCON-
NECT. We also provided empirical analysis suggesting that
BRANCHCONNECT induces a beneficial form of regularization,
reducing overfitting and improving generalization.

Future work will focus on more sophisticated combina-
tion schemes. The learned gates in our model can be viewed
as performing a rudimentary form of architecture learning,
limited to the last layer. We plan to study the applicability of
this mechanism for more general forms of model learning.

1251

[4]

[4]

