
Multi-branch architecture are widely used.
E.g., in image categorization:

Results

Connectivity Learning in Multi-Branch Networks
Karim Ahmed, Lorenzo Torresani

Extended paper: arXiv:1709.09582

Multi-branch Networks Technical Approach

CIFAR-100 (100 classes, 50K training examples)

Effect of fan-in (K)
Full, fixed connectivity,  
corresponding to
original ResNeXt  [Xie
et al., 2016]

Architecture:
Depth: 20
Bottleneck width: 4
Cardinality: 8

CIFAR-10 (10 classes, 50K training examples)

A PSEUDOCODE OF THE ALGORITHM

Algorithm 1 GATECONNECT training algorithm.

Input: a minibatch of labeled examples (xi
, y

i), C: cardinality (number of branches), K: fan-in (number of
active branch connections), ⌘: learning rate, `: the loss over the minibatch, g̃(i)

j 2 [0, 1]C : real-valued branch
gates for block j in module i from previous training iteration.
Output: updated g̃

(i)
j

1. Forward Propagation:

Normalize the real-valued gate to sum up to 1: g̃(i)j,k
g̃
(i)
j,k

PC
k0=1

g̃
(i)

j,k0
, for j = 1, . . . , C

Reset binary gate: g(i)
j 0

Draw K distinct samples from multinomial gate distribution: a1, a2, . . . , aK Mult(g̃(i)j,1, g̃
(i)
j,2, . . . , g̃

(i)
j,C)

Set active binary gate based on drawn samples:
g

(i)
j,ak
 1 for k = 1, ...,K

Compute output x(i)
j of the gate, given branch activations y(i�1)

k : x(i)
j

PC
k=1 g

(i)
j,k · y(i�1)

k
2. Backward Propagation:
Compute @`

@x
(i)
j

from @`

@y
(i)
j

Compute @`

@y
(i�1)
k

from @`

@x
(i)
j

and g

(i)
j,k

3. Parameter Update:
Compute @`

@g
(i)
j,k

given @`

@x
(i)
j

and y

(i�1)
k

g̃

(i)
j,k clip(g̃(i)j,k � ⌘ · @`

@g
(i)
j,k

)

B EXPERIMENTS ON CIFAR-10

The CIFAR-10 dataset consists of color images of size 32x32. The training set contains 50,000
images, the testing set 10,000 images. Each image in CIFAR-10 is categorized into one of 10 possible
classes. In Table 3, we report the performance of different models trained on CIFAR-10. From
these results we can observe that our models using learned connectivity achieve consistently better
performance over the equivalent models trained with the fixed connectivity (Xie et al., 2017).

Table 3: CIFAR-10 accuracies (single crop) achieved by different multi-branch architectures trained
using the predefined connectivity of ResNeXt (Fixed-Full) versus the connectivity learned by our
algorithm (Learned). Each model was trained 4 times, using different random initializations. For
each model we report the best test performance as well as the mean test performance computed from
the 4 runs.

Architecture Connectivity Accuracy (%)

{Depth (D), Bottleneck width
(w), Cardinality (C)}

Top-1
best (mean±std)

{20,4,8}
Fixed-Full K=8 (Xie et al., 2017) 91.39 (91.13±0.11)
Learned K=4 92.85 (92.76±0.10)

{29,8,8}
Fixed-Full K=8 (Xie et al., 2017) 93.26 (93.14±0.11)
Learned K=4 95.11 (94.96±0.12)

{29,64,8}
Fixed-Full K=8 (Xie et al., 2017) 96.35 (96.23±0.12)
Learned K=4 96.83 (96.73±0.11)

C EXPERIMENTS ON MINI-IMAGENET

Mini-ImageNet is a subset of the full ImageNet (Deng et al., 2009) dataset. It was used in (Vinyals
et al., 2016; Ravi & Larochelle, 2017). It is created by randomly selecting 100 classes from the

12

ImageNet (1000 classes, 1.28M training examples)

Table 1: CIFAR-100 accuracies (single crop) achieved by different architectures trained using the
predefined full connectivity of ResNeXt (Fixed-Full) versus the connectivity learned by our algorithm
(Learned). We also include models trained using random, fixed connectivity (Fixed-Random) defined
by setting K = 4 random active connections per branch. Each model was trained 4 times, using
different random initializations. For each model we report the best test performance as well as the
mean test performance computed from the 4 runs. For our method, we report performance using
K = 1 as well as K = 4. We also list the number of parameters used during training (Params-Train)
and the number of parameters obtained after pruning the unused blocks (Params-Test). Our learned
connectivity using K = 4 produces accuracy gains of up 2.2% compared to the strong ResNeXt
model, while using K = 1 yields results equivalent to ResNeXt but it induces a significant reduction
in number of parameters at test time (a saving of 40% for model {29,64,8}).

Architecture Connectivity Params Accuracy (%)

{Depth (D), Bottleneck width
(w), Cardinality (C)}

Train Test Top-1
best (mean±std)

{29,8,8}
Fixed-Full, K=8 (Xie et al., 2017) 0.86M 0.86M 73.52 (73.37±0.13)
Fixed-Random, K=4 0.86M 0.85M 72.85 (72.66±0.24)
Learned, K=4 0.86M 0.81M 75.89 (75.77±0.12)

{29,64,8}
Fixed-Full, K=8 (Xie et al., 2017) 34.4M 34.4M 82.23 (82.12±0.12)
Fixed-Random, K=4 34.4M 34.3M 81.96 (81.73±0.20)
Learned, K=4 34.4M 32.1M 84.05 (83.94±0.11)

rather than the binary vectors g

(i)
j 2 {0, 1}C . However, we found this variant to yield consistently

lower results compared to our models using binary gates. For example, for model {D = 29, w =
8, C = 8} the best accuracy achieved with real-valued gates is 1.93% worse compared to that obtained
with binary gates. In particular we observed that for this variant, the real-valued gates change little
over training even when using large learning rates. Conversely, performing the forward and backward
propagation using stochastically-sampled binary gates yields a larger exploration of connectivities
and results in bigger changes of the auxiliary real-valued gates leading to better connectivity learning.
Visualization of the learned connectivity. Figure 3 provides an illustration of the connectivity
learned by GATECONNECT for K = 1 versus the fixed connectivity of ResNeXt for model {D =
29, w = 8, C = 8}. While ResNeXt feeds the same input to all blocks of a module, our algorithm
learns different input pathways for each block and yields a branching factor that varies along depth.

3.2 IMAGENET

Finally, we evaluate our approach on the large-scale ImageNet 2012 dataset (Deng et al., 2009),
which includes images of 1000 classes. We train our approach on the training set (1.28M images) and
evaluate it on the validation set (50K images). In Table 2, we report the Top-1 and Top-5 accuracies
for three different architectures. For these experiments we set K = C/2. We can observe that for
all three architectures, our learned connectivity yields an improvement in accuracy over the fixed
connectivity of ResNeXt (Xie et al., 2017).

Table 2: ImageNet accuracies (single crop) achieved by different architectures using the predefined
connectivity of ResNeXt (Fixed-Full) versus the connectivity learned by our algorithm (Learned).

Architecture Connectivity Accuracy

{Depth (D), Bottleneck width (w),
Cardinality (C}

Top-1 Top-5

{50,4,32} Fixed-Full, K=32 (Xie et al., 2017) 77.8 93.3
Learned, K=16 79.1 94.1

{101,4,32} Fixed-Full, K=32 (Xie et al., 2017) 78.8 94.1
Learned, K=16 79.5 94.5

{101,4,64} Fixed-Full, K=64 (Xie et al., 2017) 79.6 94.7
Learned, K=32 79.8 94.8

7

To combat the complexity in hand-designing multi-branch
architectures, prior work has adopted:

q Modularized design
→ stacking multi-branch building blocks

of identical/similar topology.

q Simple, uniform connectivity rules
→ feature maps from branches are always

either added or concatenated.

Goal: learn branch connectivity from data by
optimizing training objective

Binary mask vector
defines active
connections

Forward propagation:

1. Stochastically binarize into s.t.

2. Perform forward pass using binary masks

g̃(i)
j � [0, 1]C g(i)

j � {0, 1}C

In general, the training via backpropagation consists of three steps: 1) forward propagation, 2)
backward propagation, and 3) parameters update. We stochastically binarize the real-valued branch
gates into binary-valued vectors g

(i)
j

2 {0, 1}C only during the forward propagation and backward
propagation (steps 1 and 2), whereas during the parameters update (step 3), the method updates
the real-valued branch gates g̃

(i)
j

. The weights ✓ of the convolutional and fully connected layers
are optimized using standard backpropagation. We discuss below the details of our gate training
procedure, under the constraint that at any time there can be only K active entries in the binary branch
gate g

(i)
j

, where K is a predefined integer hyper-parameter with 1  K  C. In other words, we
impose the following constraints:

g(i)
j,k

2 {0, 1},
CX

k=1

g(i)
j,k

= K 8j 2 {1, . . . , C} and 8i 2 {1, . . . , M}.

These constraints imply that each residual block receives input from exactly K branches of the
previous module.

Forward Propagation. During the forward propagation, our algorithm first normalizes the C

real-valued branch gates for each block j to sum up to 1, i.e., such that
P

C

k=1 g̃(i)
j,k

= 1. This is
done so that Mult(g̃(i)

j,1, g̃
(i)
j,2, . . . , g̃

(i)
j,C

) defines a proper multinomial distribution over the C branch
connections feeding into block j. Then, the binary branch gate g

(i)
j

is stochastically generated by
drawing K distinct samples i1, i2, . . . , iK 2 {1, . . . , C} from the multinomial distribution over the
branch connections. Finally, the entries corresponding to the K samples are activated in the binary
branch gate vector, i.e., gb

c,ik
 1, for k = 1, ..., K. The input activation volume to the residual block

j is then computed according to Eq. 2 from the sampled binary branch gates.

Backward Propagation. In the backward propagation step, the gradient @`

@y

(i�1)
k

with respect to

each branch output is obtained via back-propagation from @`

@x

(i)
j,k

and the current binary gates g(i)
j,k

.

Gate Update. In the parameter update step our algorithm computes the gradient with respect to the
binary branch gates for each branch. Then, using these computed gradients and the given learning
rate, it updates the real-valued branch gates via gradient descent. At this time we clip the updated
real-valued branch gates to constrain them to remain within the valid interval [0, 1]. The same clipping
strategy was adopted for the binary weights in the work of Courbariaux et al. [2].

As discussed in the supplementary material, after joint training over ✓ and g, we have found beneficial
to fine-tune the weights of the network with fixed gates. Pseudocode for our training procedure is
given in the supplementary material.

3 Experiments

We tested our approach on the task of image categorization using two different benchmarks: CIFAR-
100 [13], CIFAR-10 [13], Mini-ImageNet [25], and ImageNet [3].

3.1 CIFAR-100 and CIFAR-10

CIFAR-100 and CIFAR-10 are datasets of color images of size 32x32. For each dataset, the training
set consists of 50,000 examples and the test set includes 10,000 images. Each image in CIFAR-100 is
categorized into one of 100 possible classes; whereas each image in CIFAR-10 is categorized into
one of 10 possible classes.

Effect of fan-in (K). We start by studying the effect of the fan-in hyper-parameter (K) on the
performance of models built and trained using our proposed approach. The fan-in defines the number
of active branches feeding each residual block. For this experiment we use a model obtained by
stacking M = 6 multi-branch residual modules, each having cardinality C = 8 (number of branches
in each module). We use residual blocks consisting of 3 convolutional layers with a bottleneck

5

g(i)
j � {0, 1}C

Our gated multi-branch architecture. As in ResNeXt, our proposed architecture consists of a
stack of M multi-branch modules, each containing C parallel feature extractors. However, differently
from ResNeXt, each branch in a module can take a different input. The input pathway of each
branch is controlled by a binary gate vector that is learned jointly with the weights of the network.

Let g

(i)
j

=
h
g(i)

j,1, g
(i)
j,2, . . . , g

(i)
j,C

i>
2 {0, 1}C be the binary gate vector defining the active input

connections feeding the j-th residual block in module i. If g(i)
j,k

= 1, then the activation volume
produced by the k-th branch in module (i � 1) is fed as input to the j-th residual block of module
i. If g(i)

j,k

= 0, then the output from the k-th branch in the previous module is ignored by the j-th
residual block of the current module. Thus, if we denote with y

(i�1)
k

the output activation tensor
computed by the k-th branch in module (i � 1), the input x(i�1)

j

to the j-th residual block in module
i will be given by the following equation:

x

(i)
j

=
CX

k=1

g(i)
j,k

· y(i�1)
k

(2)

Then, the output of this block will be obtained through the usual residual computation, i.e., y(i)
j

=

x

(i)
j

+ F(x(i)
j

; ✓(i)
j

). We note that under this model we no longer have fixed aggregation nodes
summing up all outputs computed from a module. Instead, the gate g

(i)
j

now determines selectively
for each block which branches from the previous module will be aggregated and provided as input to
the block. Under this scheme, the branches are no longer forced to merge after a fixed number of
nonlinearities and thus can have variable length. We also point out that depending on the constraints
posed over g

(i)
j

, different interesting models can be realized. For example, by introducing the
constraint that

P
k

g(i)
j,k

= 1 for all blocks j, then each residual block will receive input from only one
branch (since each g(i)

j,k

must be either 0 or 1). It can be noted that at the other end of the spectrum,
if we set g(i)

j,k

= 1 for all blocks j, k in each module i, then all connections would be active and we
would obtain again the fixed ResNeXt architecture. In our experiments we will demonstrate that
the best results are achieved for a middle position between these two extremes, i.e., by connecting
each block to K branches where K is a hyper-parameter such that 1 < K < C. We refer to this
hyper-parameter as the fan-in of a block. As discussed in the next section, the gate vector g

(i)
j

for
each block is learned simultaneously with all the other weights in the network via backpropagation.
Finally, we point out that it may be possible for a residual block in the network to become unused.
This happens when, as a result of the optimization, block k in module (i � 1) is such that g(i)

jk

= 0
for all j = 1, . . . , C. In such case, at the end of the optimization, we prune the block in order to
reduce the number of parameters to store and to speed up inference (note that this does not affect
the function computed by the network). Thus, at any point in the network the total number of active
parallel threads can be any number smaller than or equal to C. This implies that a variable branching
factor is learned adaptively for the different depths in the network. In our experiments we report an
interesting empirical analysis of how the branching factor varies with depth.

2.2 GATECONNECT: learning to connect branches

We refer to our learning algorithm as GATECONNECT. It performs joint optimization of a given
learning objective ` with respect to both the weights of the network (✓) as well as the gates (g). Since
in this paper we apply our method to the problem of image categorization, we use the traditional
multi-class cross-entropy objective for the loss `. However, our approach can be applied without
change to other loss functions as well as other tasks benefitting from a multi-branch architecture.

In GATECONNECT the weights have real values, as in traditional networks, while the branch gates have
binary values. This renders the optimization more challenging. To learn these binary parameters, we
adopt a modified version of backpropagation, inspired by the algorithm proposed by Courbariaux et
al. [2] to train neural networks with binary weights. During training we store and update a real-valued
version g̃

(i)
j

2 [0, 1]C of the branch gates, with entries clipped to lie in the continuous interval from 0
to 1.

4

Parameter update:
Compute , and update real-valued masks ��

�g(i)
j,k

References
Xie et al. "Aggregated residual transformations for deep neural networks.", CVPR 2017.
Szegedy et al. "Rethinking the Inception Architecture for Computer Vision.", CVPR 2016.

He et al. "Deep residual learning for image recognition.” CVPR. 2016.
Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights
during propagations." NIPS 2015.

q Minimize using backpropagation

over and

�(�,g)

q During training, we update auxiliary
real-valued masks g̃(i)

j � [0, 1]C

q Constrain the number of active input connections (fan-in)
to each block to be a constant, K (a hyperparameter)

g �

weights from the network [15, 7, 9, 6, 8]. However, these prior methods operate in stages where first
the network with full connectivity is learned and connections are subsequently greedily removed.
Conversely, our approach frames connectivity learning as a single optimization over a standard loss.

5 Conclusions

In this paper we introduced an algorithm to learn the connectivity of deep multi-branch networks.
The problem is formulated as a single joint optimization over the weights and the branch connections
of the model by minimization of a traditional, task-specific loss function. We tested our approach on
twochallenging image categorization benchmarks where it led to significant accuracy improvements
over the state-of-the-art ResNeXt model applied to the same architectures. An added benefit of our
approach is that it can automatically identify superfluous blocks, which can be pruned without impact
on accuracy for more efficient testing and for reducing the number of parameters to store.

While our experiments were focused on a particular multi-branch architecture (ResNeXt) and a
specific form of building block (residual block), we expect the benefits of our approach to extend to
other modules and network structures. For example, it could be applied to learn the connectivity of
skip-connections in DenseNets [11], which are currently based on predefined connectivity rules. In
this paper, our gates perform non-parametric additive aggregation of the branch outputs. It would be
interesting to experiment with learnable (parametric) aggregations of the outputs from the individual
branches. Our approach is limited to learning connectivity within a given, fixed architecture. Future
work will explore the use of learnable gates for architecture discovery.

5.0.1 Acknowledgements.

This work was funded in part by NSF CAREER award IIS-0952943 and NSF award CNS-1205521.
We gratefully acknowledge NVIDIA and Facebook for the donation of GPUs used for portions of
this work.

A Supplementary Material

Algorithm 1 GATECONNECT training algorithm.

Input: a minibatch of labeled examples (xi

, y

i), C: cardinality (number of branches), K: fan-in (number of
active branch connections), ⌘: learning rate, `: the loss over the minibatch, g̃(i)

j

2 [0, 1]C : real-valued branch
gates for block j in module i from previous training iteration.
Output: updated g̃

(i)
j

1. Forward Propagation:

Normalize the real-valued gate to sum up to 1: g̃(i)
j,k

g̃

(i)
j,k

PC
k0=1

g̃

(i)

j,k0
, for j = 1, . . . , C

Reset binary gate: g(i)
j

 0

Draw K distinct samples from multinomial gate distribution: a1, a2, . . . , aK

 Mult(g̃(i)
j,1, g̃

(i)
j,2, . . . , g̃

(i)
j,C

)
Set active binary gate based on drawn samples:
g

(i)
j,ak
 1 for k = 1, ...,K

Compute output x(i)
j

of the gate, given branch activations y(i�1)
k

: x(i)
j

=
P

C

k=1 g
(i)
j,k

· y(i�1)
k

2. Backward Propagation:
Compute @`

@y
(i�1)
k

from @`

@x

(i)
j,k

and g

(i)
j,k

2. Parameter Update:
Compute @`

@g

(i)
j,k

given @`

@y
(i�1)
k

and y

(i�1)
k

g̃

(i)
j,k

 clip(g̃(i)
j,k

� ⌘ · @`

@g

(i)
j,k

)

Implementation details for the experiments on CIFAR-100 and CIFAR-10

We follow the data augmentation strategy as in [27, 10]. Four pixels are padded on each side of the
input image, and a 32x32 crop is randomly sampled from the padded image or its horizontal flip, with

9

Table 1: CIFAR-100 accuracies (single crop) achieved by different architectures trained using the
predefined full connectivity of ResNeXt (Fixed-Full) versus the connectivity learned by our algorithm
(Learned). We also include models trained using random, fixed connectivity (Fixed-Random) defined
by setting K = 4 random active connections per branch. Each model was trained 4 times, using
different random initializations. For each model we report the best test performance as well as the
mean test performance computed from the 4 runs. For our method, we report performance using
K = 1 as well as K = 4. We also list the number of parameters used during training (Params-Train)
and the number of parameters obtained after pruning the unused blocks (Params-Test). Our learned
connectivity using K = 4 produces accuracy gains of up 2.2% compared to the strong ResNeXt
model, while using K = 1 yields results equivalent to ResNeXt but it induces a significant reduction
in number of parameters at test time (a saving of 40% for model {29,64,8}).

Architecture Connectivity Params Accuracy (%)

{Depth (D), Bottleneck width
(w), Cardinality (C)}

Train Test Top-1
best (mean±std)

{29,8,8}
Fixed-Full, K=8 (Xie et al., 2017) 0.86M 0.86M 73.52 (73.37±0.13)
Fixed-Random, K=4 0.86M 0.85M 72.85 (72.66±0.24)
Learned, K=1 0.86M 0.65M 73.91 (73.76±0.14)
Learned, K=4 0.86M 0.81M 75.89 (75.77±0.12)

{29,64,8}
Fixed-Full, K=8 (Xie et al., 2017) 34.4M 34.4M 82.23 (82.12±0.12)
Fixed-Random, K=4 34.4M 34.3M 81.96 (81.73±0.20)
Learned, K=1 34.4M 20.5M 82.34 (82.18±0.19)
Learned, K=4 34.4M 32.1M 84.05 (83.94±0.11)

rather than the binary vectors g

(i)
j 2 {0, 1}C . However, we found this variant to yield consistently

lower results compared to our models using binary gates. For example, for model {D = 29, w =
8, C = 8} the best accuracy achieved with real-valued gates is 1.93% worse compared to that obtained
with binary gates. In particular we observed that for this variant, the real-valued gates change little
over training even when using large learning rates. Conversely, performing the forward and backward
propagation using stochastically-sampled binary gates yields a larger exploration of connectivities
and results in bigger changes of the auxiliary real-valued gates leading to better connectivity learning.

Visualization of the learned connectivity. Figure 3 provides an illustration of the connectivity
learned by GATECONNECT for K = 1 versus the fixed connectivity of ResNeXt for model {D =
29, w = 8, C = 8}. While ResNeXt feeds the same input to all blocks of a module, our algorithm
learns different input pathways for each block and yields a branching factor that varies along depth.

3.2 IMAGENET

Finally, we evaluate our approach on the large-scale ImageNet 2012 dataset (Deng et al., 2009),
which includes images of 1000 classes. We train our approach on the training set (1.28M images) and
evaluate it on the validation set (50K images). In Table 2, we report the Top-1 and Top-5 accuracies
for three different architectures. For these experiments we set K = C/2. We can observe that for
all three architectures, our learned connectivity yields an improvement in accuracy over the fixed
connectivity of ResNeXt (Xie et al., 2017).

3.3 CIFAR-10 & MINI-IMAGENET

We invite the reader to review results achieved on CIFAR-10 & Mini-ImageNet in the Appendix.
Also on these datasets our algorithm consistently outperforms the ResNeXt models based on fixed
connectivity, with accuracy gains of up to 3.8%.

4 RELATED WORK

Despite their wide adoption, deep networks often require laborious model search in order to yield
good results. As a result, significant research effort has been devoted to the design of algorithms
for automatic model selection. However, most of this prior work falls within the genre of hyper-

7

Figure 2: Varying the fan-in (K) of our model, i.e., the
number of active branches provided as input to each
residual block. The plot reports accuracy achieved on
CIFAR-100 using a network stack of M = 6 ResNeXt
modules having cardinality C = 8 and bottleneck
width w = 4. All models have the same number of
parameters (0.28M). The best accuracy is obtained for
K = 4.

Figure 3: A visualization of the fixed branch connectivity of ResNext (left)
versus the connectivity learned by our method (right) using (K = 1). Each
green square is a residual block, each row of C = 8 square is a multi-branch
module. The network consists of a stack of M = 9 modules. Arrows
indicate pathways connecting residual blocks of adjacent modules. In each
net, the top red circle is a convolutional layer, the bottom circle is the final
fully-connected layer. It can be noticed that GATECONNECT learns sparse
connections. The squares without in/out edges are those deemed superfluous
by our algorithm and can be pruned at the end of learning. This gives rise to
a branching factor that varies along the depth of the net.

We trained and tested this architecture using different fan-in values: K = 1, .., 8. Note that varying
K does not affect the number of parameters. Thus, all these models have the same learning capacity.
The results are shown in Figure 2. We can see that the best accuracy is achieved by connecting
each residual block to K = 4 branches out of the total C = 8 in each module. Using a very low
or very high fan-in yields lower accuracy. Note that when setting K = C, there is no need to learn
the gates. In this case each gate is simply replaced by an element-wise addition of the outputs from
all the branches. This renders the model equivalent to ResNeXt (Xie et al., 2017), which has fixed
connectivity. Based on the results of Figure 2, in all our experiments below we use K = 4, since it
gives the best accuracy, but also K = 1, since it gives high sparsity which, as we will see shortly,
implies savings in number of parameters.
Varying the architectures. In Table 1 we show the classification accuracy achieved with different
architectures (the details of each architecture are listed in the Appendix). For each architecture we
report results obtained using GATECONNECT with fan-in K = 1 and K = 4. We also include the
accuracy achieved with full (as opposed to learned) connectivity, which corresponds to ResNeXt.
These results show that learning the connectivity produces consistently higher accuracy than using
fixed connectivity, with accuracy gains of up 2.2% compared to the state-of-the-art ResNeXt model.
We note that these improvements in accuracy come at little computational training cost: the average
training time overhead for learning gates and weights is about 39% using our unoptimized imple-
mentation compared to learning only the weights given a fixed connectivity. Additionally, for each
architecture we include models trained using sparse random connectivity (Fixed-Random). For these
models, each gate is set to have K = 4 randomly-chosen active connections, and the connectivity
is kept fixed during learning of the parameters. We can notice that the accuracy of these nets is
considerably lower compared to our models, despite having the same connectivity density (K = 4).
This shows that the improvements of our approach over ResNeXt are not due to sparser connectivity
but they are rather due to learned connectivity.
Parameter savings. Our proposed approach provides the benefit of automatically identifying
during training residual blocks that are unnecessary. At the end of the training, the unused residual
blocks can be pruned away. This yields savings in the number of parameters to store and in test-
time computation. In Table 1, columns Train and Test under Params show the original number of
parameters (used during training) and the number of parameters after pruning (used at test-time).
Note that for the biggest architecture, our approach using K = 1 yields a parameter saving of 40%
compared to ResNeXt with full connectivity (20.5M vs 34.4M), while achieving the same accuracy.
Thus, in summary, using fan-in K = 4 gives models that have the same number of parameters as
ResNeXt but they yield higher accuracy; using fan-in K = 1 gives a significant saving in number of
parameters and accuracy on par with ResNeXt.
Model with real-valued gates. We have also attempted to learn our models using real-valued gates
by computing tensors in the forward and backward propagation with respect to gates g̃

(i)
j 2 [0, 1]C

6

