-

O

B

Connectivity Learning in Multi-Branch Networks

Karim Ahmed, Lorenzo Torresani

Extended paper: arXiv:1709.09582

2L
« Dartmouth

~

J

Multi-branch Networks

Multi-branch architecture are widely used.
E.g., In Image categorization:
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 [Szegedy et al., CVPR2016]  [Heetal, ICCV 2015] [Xie et al., CVPR 2017]
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To combat the complexity in hand-designing multi-branch
architectures, prior work has adopted:

d Modqularized design
- stacking multi-branch building blocks
of identical/similar topology.

Q Simple, uniform connectivity rules
- feature maps from branches are always
either added or concatenated.

Fixed connectivity Learned connectivity

ResNeXt Our Approach

[Xie et al., CVPR 2017] K (#Connected branches) = 1

Technical Approach

Goal. learn branch connectivity from data by
optimizing training objective

Fixed additive
aggregation points
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ResNeXt

[Xie et al., CVPR 2017]

d Minimize (0, g) using backpropagation

over € and @

Learned binary masks
define connectivity for each block
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Binary mask vector
~ defines active

4 During training, we update auxiliary
g\ € [0,1)¢

real-valued masks

d Constrain the number of active input connections (fan-in)
to each block to be a constant, K (a hyperparameter)

Forward propagation:

1. Stochastically binarize &;
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2. Perform forward pass using binary masks gﬁ-i) c {0,1}¢
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Parameter update:
Compute 88({;) and update real-valued masks gj(zll |
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Results

CIFAR'1 OO (100 classes, 50K training examples)

Effect of fan-in (K)

72 Full, fixed connectivity,
corresponding to
1 original ResNeXt [Xie
9:;70_ et al., 2016]
§ 691 Architecture:
< o - Depth: 20
Bottleneck width: 4
67 - Cardinality: 8

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8
Number of active connected branches (K)

Architecture Connectivity Params

Accuracy (%)

{Depth (D), Bottleneck width Train
(w), Cardinality (C)}

Test

Top-1
best (mean=std)

Fixed-Full, K=8 (Xie et al., 2017) 0.86M 0.86M  73.52 (73.3740.13)
{29,8,8} Fixed-Random, K=4 0.86M 0.85M  72.85 (72.66+0.24)
Learned, K=1 0.86M €0.65M)> 73.91 (73.76+0.14)
Learned, K=4 0.86M 0.81M 75.89 (75.77+0.12)
Fixed-Full, K=8 (Xie et al., 2017) 34.4M 344M 82.23 (82.1240.12)
{29,64,8} Fixed-Random, K=4 344M  34.3M  81.96 (81.73+0.20)
Learned, K=1 34.4M €20.5M) 82.34 (82.184+0.19)
Learned, K=4 344M  32.1M  84.05 (83.94+0.11)

CIFAR'1 0 (10 classes, 50K training examples)

Architecture Connectivity

{Depth (D), Bottleneck width
(w), Cardinality (C)}

Accuracy (%)

Top-1
best (mean=+std)

Fixed-Full K=8 (Xie et al., 2017)

91.39 (91.1320.11)

{20,4,8} Learned K=4 92.85 (92.7640.10)
Fixed-Full K=8 (Xie et al., 2017)  93.26 (93.1440.11)
{29,8,8} Learned K=4 95.11 (94.9640.12)
Fixed-Full K=8 (Xie et al., 2017) 96.35 (96.2340.12)
{29,64,8) Learned K=4 96.83 (96.73+0.11)

ImageNet (1000 classes, 1.28M training examples)

Architecture Connectivity Accuracy
{Depth (D), Bottleneck width (w), Top-1  Top-5
Cardinality (C'}

(50,4,32) Fixed-Full, K=32 (Xie et al., 2017)  77.8 93.3

Learned, K=16

79.1 94.1

Fixed-Full, K=32 (Xie et al., 2017)  78.8 94.1

{101,4932} Learned, K=16 79.5 94.5

Fixed-Full, K=64 (Xie et al., 2017) 79.6 047

1101.4,64} Learned, K=32 798  94.8
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