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Intuition
The visual system of a layperson is a very good generalist that can accurately discriminate
coarse categories but lacks the specialist eye to differentiate categories that look alike.
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Contribution
Inspired by this analogy, we propose a novel tree-structured architecture (Network of Experts)
for large-scale Image categorization. It can be built from any existing convolutional neural
network (CNN), and the training is completely end-to-end.
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Related Work
Our approach relates closely to methods that learn hierarchies of categories to train CNN
experts, such as Hinton et al. [2], Warde-Farley et al. [7], and (HD-CNN) Yan et al. [8].

But it provides the following novel benefits :
• Improved accuracy, tested for 5 different base architectures.
• Does not require training of base model.
• Does not suffer from mistakes due to routing to the wrong expert.
• End-to-end optimization over the original categorization problem.

Technical Approach
We decompose large-scale image categorization into two separate tasks:

(I).Learning the Generalist:
The goal of this stage is to learn K (with K << C) groupings of classes called specialties.
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Given base model objective:
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We propose the following generalist objective:
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where �(yi) maps classes to specialties

i.e. ∀ yi ∈ {1, . . . , C} assign �(yi) ∈ {1, . . . , K} where K︸︷︷︸
#Specialties

<< C︸︷︷︸
#Classes

Minimized via alternation between:
1. Optimizing parameters θG while keeping specialty labels � fixed (traditional SGD).
2. Updating specialty labels � given the current estimate of weights θG.

(II).Training the Network of Experts:
The Network of Experts is a tree-structured architecture:

• The trunk of the tree is finetuned from the Generalist and contains shared features.
• The trunk splits into K branches corresponding to the K learned specialties.
• Each branch is an expert optimized to distinguish the classes within its specialty.
• Final softmax layer over all C classes calibrates the outputs of the K experts.

Results
CIFAR100

Model K=2 K=5 K=10 K=20 K=50

NOFE 53.3 55.0 56.2 55.7 55.33
Base: AlexNet-C100 54.0

Table 1: Top-1 accuracy (%) on CIFAR100 for the base
model (AlexNet-C100) and Network of Experts (NOFE) us-
ing varying number of experts (K)

maple tree, oak tree, pine tree,
willow tree, palm tree

apple, cloud, poppy, rose, tulip

dolphin, seal, shark, turtle, whale

baby, boy, girl, man, woman

Table 2: Example of specialties learned
from CIFAR100

Architecture Base Model NOFE

AlexNet-C100 [4] 54.04 56.24
AlexNet-Quick-C100 [3] 37.94 45.58
VGG11-C100 [6] 68.48 69.27
NIN-C100 [5] 64.73 67.96
ResNet56-C100 [1] 73.52 76.24 Best Published Result

Table 3: CIFAR100 top-1 accuracy (%) for 5 different CNN base architectures and corresponding NOFE
models.

Approach Top-1 # params Avg. Inference time

NOFE using NIN 67.96 4.7M 0.0071 secs
HD-CNN [8] using NIN 67.38 9.2M 0.0147 secs

Table 4: Our NOFE compared to HD-CNN [8], using NIN[5] as a base model on CIFAR100.

ImageNet

Approach Top-1 # params

Base: AlexNet-Caffe [4] 58.71 60.9M
NOFE, K=10 61.29 40.4M
NOFE, K=40 60.85 151.4M
NOFE, K=10 (spectral clustering) 56.10 40.4M

Table 5: Top-1 accuracy on the ImageNet validation set using AlexNet and our NOFE.
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