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Intuition

The visual system of a layperson is a very good generalist that can accurately discriminate
coarse categories but lacks the specialist eye to differentiate categories that look alike.
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Regularization Classification Loss

We propose the following generalist objective:
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where /(y') maps classes to specialties

ie.Vy' €{l,...,C} assign ((y') € {1,...,K} where

Minimized via alternation between:
1. Optimizing parameters ¢ while keeping specialty labels / fixed (traditional SGD).
2. Updating specialty labels / given the current estimate of weights 6.

|an.Training the Network of Experts: |

The Network of Experts is a tree-structured architecture:

. .
Contribution
Inspired by this analogy, we propose a novel tree-structured architecture (Network of Experts)
for large-scale Image categorization. It can be built from any existing convolutional neural
network (CNN), and the training is completely end-to-end.
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Related Work

Our approach relates closely to methods that learn hierarchies of categories to train CNN
experts, such as Hinton et al. [2], Warde-Farley et al. [7], and (HD-CNN) Yan et al. [8].

But it provides the following novel benefits :

¢ Improved accuracy, tested for 5 different base architectures.

* Does not require training of base model.

* Does not suffer from mistakes due to routing to the wrong expert.
¢ End-to-end optimization over the original categorization problem.

Technical Approach

We decompose large-scale image categorization into two separate tasks:

[0.Learning the Generalist: |

The goal of this stage is to learn K (with K << C) groupings of classes called specialties.
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o The trunk of the tree is finetuned from the Generalist and contains shared features.
* The trunk splits into K" branches corresponding to the K learned specialties.
 Each branch is an expert optimized to distinguish the classes within its specialty.

* Final softmax layer over all C' classes calibrates the outputs of the K experts.

Results

maple_tree, oak_tree, pine_tree,

Model K=2 K=5 K=10 K=20 K=50 willow.tree, palm tree
NOFE 53.3 55.0 56.2 55.7 55.33 apple, cloud, poppy, rose, tulip
Base: AlexNet-C100 54.0

dolphin, seal, shark, turtle, whale

Table 1: Top-1 accuracy (%) on CIFAR100 for the base baby, boy, girl, man, woman

model (AlexNet-C100) and Network of Experts (NOFE) us-
ing varying number of experts (K)

Table 2: Example of specialties learned

from CIFAR100
Architecture Base Model NOFE
AlexNet-C100 [4] 54.04 56.24
AlexNet-Quick-C100 [3] 37.94 45.58
VGG11-C100 [6] 68.48 69.27
NIN-C100 [5] 64.73 67.96
ResNet56-C100 [1] 73.52 76.24 Best Published Result

Table 3: CIFAR100 top-1 accuracy (%) for 5 different CNN base architectures and corresponding NOFE
models.

Approach Top-1 # params Avg. Inference time
NOEFE using NIN 67.96  4.7M 0.0071 secs
HD-CNN [8] using NIN 67.38  9.2M 0.0147 secs

Table 4: Our NOFE compared to HD-CNN [8], using NIN[5] as a base model on CIFAR100.
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Approach Top-1 # params
Base: AlexNet-Caffe [4] 58.71  60.9M
NOFE, K=10 61.29  40.4M
NoOFrE, K=40 60.85 151.4M
NOFE, K=10 (spectral clustering) 56.10  40.4M

Table 5: Top-1 accuracy on the ImageNet validation set using AlexNet and our NOFE.
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