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Abstract

Deep neural networks have emerged as one of the most prominent models for
problems that require the learning of complex functions and that involve large
amounts of training data such as visual recognition problems. The power of
deep learning stems from the ability to learn representations optimized for a
specific task, as opposed to relying on hand-crafted features. To yield good
results, however, deep models often require manual architecture search which is
still challenging, time-consuming and error-prone process even for expert human
designers. The difficulty lies in the various design choices such as depth, filter sizes,
number of feature maps, and connectivity patterns that affect the performance
of the system and often require tedious periods of trial and error to identify a
satisfactory set of choices for a specific task and dataset. Thus, one may argue
that deep learning has replaced hand-crafted features with hand-crafted models
equipped by representation learning. Consequently, there has been an increasing
effort to develop Neural Architecture Search methods for automatic model
selection. Unfortunately, most of the Neural Architecture Search methods are
computationally expensive due to the combinatorial explosion of design options

in the search space. In this thesis, we propose Neural Connectivity Learning
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as a middle-ground approach between two extremes: hand-crafting the network
versus learning the full architecture. The proposed Neural Connectivity Learning
methods aim at bounding the search space and allowing fast architecture search, by
learning the connectivity between preset network components. Specifically, in the
domain of large-scale image classification, we introduce two different approaches
that learn separate features of coarse image classes by learning the connectivity
between fine-grained classes in convolutional neural networks. Subsequently,
we present an algorithm that learns the connections between the modules of
convolutional neural networks, instead of being chosen a priori by the human
designer. Finally, to alleviate the computational complexity of capsule neural
networks, we present a new mechanism for learning the connectivity and routing
between capsules. The empirical studies conducted on several image classification
datasets show that the proposed connectivity learning approaches outperform the

baseline approaches that rely on fixed connectivity rules.
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