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Abstract

Capsule networks have been shown to be powerful models for image classification,
thanks to their ability to represent and capture viewpoint variations of an object.
However, the high computational complexity of capsule networks that stems from
the recurrent dynamic routing poses a major drawback making their use for large-
scale image classification challenging. In this work, we propose STAR-CAPS a
capsule-based network that exploits a straight-through attentive routing to address
the drawbacks of capsule networks. By utilizing attention modules augmented
by differentiable binary routers, the proposed mechanism estimates the routing
coefficients between capsules without recurrence, as opposed to prior related
work. Subsequently, the routers utilize straight-through estimators to make binary
decisions to either connect or disconnect the route between capsules, allowing stable
and faster performance. The experiments conducted on several image classification
datasets, including MNIST, SmallNorb, CIFAR-10, CIFAR-100 and ImageNet
show that STAR-CAPS outperforms the baseline capsule networks.

1 Introduction

Convolutional neural networks (CNNs) have achieved successful performance on different computer
vision tasks [7, 14, 25, 6, 22]. By using local receptive fields and shared weights, CNNs can identify
the existence of entities regardless of their spatial locations (translation invariance). CNNs use a
deep sequence of convolutional layers or max pooling operations which downsample the spatial size.
Max-pooling is considered a primitive form of routing in which the output only attends to the most
active neuron in the pool. By throwing away information about the precise position of an entity, max-
pooling achieves some translation invariance. To mitigate the viewpoint variations of an entity, CNNs
combine the activities of the pool, i.e., overlapping the sub-sampling pools. However, CNNs fail to
represent the part-whole relationships of the entities, thus they cannot detect radically new viewpoints
due to losing the precise spatial relationships in the max-pooling operations. Contrarily, capsule
networks [23, 8] utilize trainable viewpoint-invariant transformations that learn to represent part-
whole relationship of the entities. Although, capsule models have been shown to be powerful models
to detect viewpoint variations compared to the traditional convolutional neural networks [23, 8], the
computational complexity of these models during training and inference is a major drawback which
limits utilizing these networks efficiently on large-scale image classification datasets. This poses a
dilemma: choosing between capsule networks and convolutional neural networks requires sacrificing
either the computational efficiency or the mechanism to detect viewpoint variations, respectively.
In this work, we present STAR-CAPS, a capsule-based architecture that utilizes a straight-through
attentive routing to address the drawbacks of the recurrent dynamic routing. The proposed routing
mechanism is based on efficient attention modules augmented by differentiable binary routers, which
make routing decisions utilizing a set of straight-through gradient estimators [10, 1]. We outline the
motivation and the contributions of our work, next.
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1.1 Motivation and Contributions

The computational complexity of the capsule networks during the training stage as well as the
inference, stems from the complex mechanisms of the voting and the routing steps. In the voting step,
the lower-level n capsules cast votes for the higher-levelm capsules. This is achieved by transforming
the lower-level pose matrices using distinct (n ×m) transformation matrices. For a capsule layer
with kernel size of k, the voting step in one forward pass requires (k2 × n × m) matrix-matrix
multiplications. In the routing step, the recurrent dynamic routing algorithms [8, 23] depend on
multiple iterations to update the agreements. Each iteration requires additional expensive operations
such as matrix multiplications or exponential functions. The routing complexity gets intensified in the
EM routing algorithm [8] that requires two steps (E-step and M-Step) per iteration. Though a capsule
network architecture has a fixed number of parameters, training and inference time can increase
dramatically according to the number of routing iterations defined a priori as a hyperparameter.

To address the computational complexity of capsule networks, we replace the recurrent dynamic rout-
ing by a non-recursive attention-based routing mechanism. The motivation of our routing mechanism
stems from the relation between the non-recurrent self-attention employed in the Transformer [26]
and the recurrent dynamic routing [8, 23]. Compared to the recurrent neural networks, the self-
attention [26] has been shown to be faster and more powerful. In fact, the recurrent dynamic routing
can been seen as an attention mechanism, but in the opposite direction [8]. As an additional advantage
of our proposed routing mechanism, the capsule network avoids the underfitting/overfitting caused by
the improper setting of the number of routing iterations [23]. The experiments conducted by Sabour
et al. [23] showed that fewer routing iterations may lead to underfitting, whereas large number of
iterations cause overfitting; thus, training a capsule network often require trial and error to identify a
satisfactory number of routing iterations for a specific task and dataset. Furthermore, compared to
the baseline capsule network [8], our approach shows a stable and better performance without being
sensitive to the predefined number of capsules in each layer and their initializations.

Our main contributions can be summarized as follows.
• To enable faster training and inference, we replace the recurrent dynamic routing mechanism by

efficient attention modules augmented by differentiable binary routers, which exploit a group of
straight-through gradient estimators to make routing decisions.
• As an additional benefit of the proposed routing mechanism, the capsule network avoids the

underfitting/overfitting that occurs in the recurrent dynamic routing mechanisms, caused by
choosing an improper number of iterations. Furthermore, our approach allows more stable
performance without being sensitive to the predefined number of capsules and their initializations.
• We conducted different experiments on several image classification datasets, including MNIST,

SmallNorb, CIFAR-10, CIFAR-100 and ImageNet. Our results show that STAR-CAPS outperforms
the baseline capsule networks.

2 Background
2.1 Capsule Networks
A capsule neural network consists of capsule layers, where each layer is constructed from a set of
capsules. A capsule is a unit that represents a group of neurons formulated as a vector [23] or a
matrix [8] that reflects properties of an entity such as pose. Figure 1 shows traditional neural layers
vs. capsule layers. In traditional neural networks, the neurons are connected through a set of weights
learned during training. In capsule networks, the information flow between the lower-level and the
higher-level capsules can be described in two steps: (1) voting, in which lower-level capsules cast
votes for the higher-level capsules, and (2) routing, where lower-level and higher-level capsules are
connected via routing coefficients learned by a dynamic routing algorithm. In DynamicCaps [23]
the capsule is a vector that represents the pose, and its length indicates the existence of an entity. In
EMCaps [8] the capsule has a pose matrix, and an activation scalar.

In general, the architecture of capsule networks [8, 23] consists of: (i) a traditional convolutional
layer, (ii) a PrimaryCaps, a special convolutional capsule layer that converts activities into vector
capsules [23] or matrix capsules [8], (iii) a set of convolutional capsule layers (ConvCaps layers)
that learn the part-whole relationships of entities, (iv) the final capsule layer is ClassCaps which
outputs the final class predictions. During voting, the pose of a lower-level capsule is multiplied
by trainable weights (transformation matrix) to cast a vote for each higher-level capsule. Capsules
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Figure 1: Traditional Neural Layers (left) vs. Capsule Neural Layers (right).

make use of this underlying linearity to allow learning and representing the part-whole relationships
of the entities, thus detecting the viewpoint variations [8]. Recurrent dynamic routing is a routing-
by-agreement iterative approach, in which each lower-level capsule sends its vote to the capsules
in the higher level that agree. These agreements are achieved through many iterations of adjusting
the routing coefficients. The routing-by-agreement algorithm in DynamicCaps [23] is a dynamic
iterative mechanism based on coordinate descent optimization; whereas in EMCaps [8] the routing is
based on an Expectation-Maximization procedure.

2.2 Attentions
The Transformer [26] relies on multi-head self-attentions to capture the dependencies between the
input and the output. The self-attention layers decide how to attend various parts of the input and
generates attention coefficients to update the representations. Compared to the recurrent layers
used in recurrent neural networks, the self-attention layers that do not use any recurrence have been
shown to be faster and more powerful [26]. It can be noticed the relation between the self-attention
mechanism employed in the Transformer [26] and the recurrent dynamic routing approaches [8, 23]
in capsule networks. Dynamic routing [8, 23] can been seen as an attention mechanism, but in the
opposite direction. The dynamic routing is a bottom-up approach where the competition is between
the higher-level capsules that a lower-level capsule might send its vote to; whereas the attention-based
routing is a top-down approach where the competition is between the lower-level capsules that a
higher-level capsule might attend to. Several prior work have utilized attention mechanisms with
capsule-based networks. Zhang et al. [30] proposed a relation extraction approach based on capsule
networks with attention; however, the proposed attention mechanism was used as an augmentation
to a capsule network [23] that utilizes a dynamic routing mechanism. Li et al. [18] proposed to
improve the information aggregation for multi-head attention with a dynamic routing algorithm.
Xinyi et al. [29] proposed a capsule graph network that utilizes an attention module to scale node
embeddings followed by dynamic routing to generate graph capsules. Differently from the prior work,
we propose a capsule-based architecture that replaces the recurrent dynamic routing mechanism by a
non-recurrent attentive routing mechanism.

2.3 Straight-through Estimators
Our approach utilizes routing modules to make binary decisions to either connect or disconnect the
route between capsules. Propagating gradients through discrete stochastic nodes has been studied
in the literature, for instance Bengio et al. [1] proposed a straight-through estimator to estimate and
propagate the gradients through discrete stochastic neurons. In STAR-CAPS, we adopt a straight-
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Figure 2: Overview of a STAR-CAPS layer.

through estimator based on Gumbel-Softmax [10] to implement the binary routers. Differently from
our approach, Guo et al. [5] and Viet et al. [27] uses Gumbel-Softmax [10], to decide which layers in
a CNN to fine-tune during transfer learning, and for adaptive inference in CNNs, respectively.

3 STAR-CAPS Architecture

STAR-CAPS is a capsule-based network that utilizes a straight-through attentive routing mechanism.
We opt to formulate each capsule as a matrix rather than a vector to save parameters [8]. Given the
pose features from the lower-level capsules, we transform the pose through shared trainable weight
matrices, i.e. a single weight matrix between each lower-level capsule and all the higher-level capsules.
We call the output of this transformation the pre-vote. The routing between the lower-level and higher-
level capsules takes place through two components: the Attention Estimator and the Straight-through
Router. Given the pre-vote, each Attention Estimator estimates an attentive coefficient matrix that
acts as a soft relevance signal for each higher-level capsule. Additionally, each Attention Estimator is
sequentially augmented by a Straight-through Router, a differentiable binary router that acts as a gate.
This router estimates a binary signal that decides whether to connect or disconnect the current route
between the lower-level capsule and the higher-level capsule. The binary signal estimated by the
router can be seen as a hard-attention coefficient, albeit differentiable. Conceptually, each route can
be seen as a double-attention (soft & hard) mechanism. Between each lower-level capsule and all the
higher-level capsules, we build a tree of double-attentions; thus, creating a forest of double-attentions
in each capsule layer. During training, each double-attention component learns the connectivity
between capsules in a stochastic dynamic manner, yet differentiable, which can be a seen as an
attention-based connectivity search mechanism. Next, we give an overview of the overall architecture
(§ 3.1), then we discuss the Attention Estimator (§ 3.2) and the Straight-through Router (§ 3.3).

3.1 Overview

Our architecture starts with a regular convolutional layer (Conv) with kernel (k̆ × k̆), c̆ channels and
ReLU non-linearity, followed by a sequence of capsule layers. The first capsule layer is a primary
capsule type (PrimaryCaps) [8], followed by a set of m convolutional capsule type (ConvCaps).
PrimaryCaps and ConvCaps layers have kernel size of (k×k). The final layer (ClassCaps) predicts
the classes, where each class is represented by one capsule, i.e. the number of capsules is equal to the
number of classes. Each capsule layer ` ∈ {0, . . . ,m,m+ 1} contains n` capsules. Each capsule is
composed of a pose matrix defined explicitly, whereas the activation is implicitly encoded as we will
discuss later. We use the following notation to define a capsule network:
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{
Conv(k̆, c̆), PrimaryCaps(k, n0), {ConvCaps`(k, n`) | 1 ≤ ` ≤ m}, ClassCaps(nm+1)

}
ConvCaps is the key layer of the architecture where the routing between capsules takes place. Figure 2
illustrates an overview of the (ConvCaps `) using our proposed routing mechanism. The input of
ConvCaps ` is the set of the pose matrices P`−1 =

{
Pi ∈ Rp×p | i ∈ {1, . . . , n`−1}

}
generated

by the lower-level capsules in layer ` − 1. Correspondingly, the output is the set of pose matrices
P` =

{
P̃j ∈ Rp×p | j ∈ {1, . . . , n`}

}
generated by the higher-level capsules defined in the current

layer `. Pose matrices are not stored parameters and they act as a group of activities.

Transformation of Input Pose: Given P`−1, each input pose matrix 1 Pi ∈ Rp×p is multiplied by a
trainable transformation matrix Wi ∈ Rp×p. We point out that the output of each transformation is
not the actual vote considering that there is a single transformation matrix for each input pose matrix.
Thus, we call the transformed pose, the pre-vote Vpre

i ∈ Rp×p.
Vpre
i = PiWi, ∀i ∈ {1, . . . , n`−1} (1)

Attentions: For capsule i, we build a tree structure of Attention Estimator (§ 3.2) modules. Each
module estimates distinct attentive matrix Aij for every capsule j, given the shared Vpre

i{
Tij : Vpre

i ∈ Rp×p → Aij ∈ Rp×p | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}
}

(2)

Routers: Given the attentive matrix Aij estimated by Tij (Eqn. 2), a Straight-Through Router (§ 3.3)
Rij acting as a gate, estimates a binary decision value δij ∈ {0, 1} indicating whether to disconnect
(δij = 0) or connect (δij = 1) the route between capsules i and j. This mechanism can be seen as a
hard attention, yet differentiable (see (§ 3.3)), where eachRij sends its hard attention signal to the
higher-level capsules.

{
Rij : Aij ∈ Rp×p → δij ∈ {0, 1} | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}

}
(3)

Calculation of Output Pose: Each higher-level capsule j, receives a list of n`−1 tuples of features,
each tuple (Vpre

i ,Aij , δij) is generated by the lower-level capsule i. The output pose matrix
P̃j ∈ Rp×p of capsule j in ConvCaps ` is calculated as follows:

Ãij = Aij �
n`−1∑
i=1
δij=1

Aij ; P̃j =

n`−1∑
i=1
δij=1

Vpre
i � Ãij (4)

� is element-wise division,
∑
δij=1 is a summation masked by δij , � is element-wise product, and

(Vpre
i � Ãij) is the attentive vote Vattn

ij

Activation Probablity: The ClassCaps layer (` = m+ 1) outputs the final predictions, where each
capsule represents a single class. The activation probability (at) indicates the presence of an object
class t. This activation is implicitly encoded in the capsule. Given P̃t, we calculate at as follows:

at =M
(
σ(P̃t)

)
=

1

p2

p∑
s=1

p∑
ŝ=1

σ(P̃t[s, ŝ]), t ∈ {1, . . . , nm+1} (5)

σ is a sigmoid function,M is a global average pooling [19].

Loss Function: Given the activations (at), t ∈ {1, . . . , nm+1}, we calculate the spread loss [8].

3.2 Attention Estimator

The role of the Attention Estimator (Tij) (Eqn.2) is to estimate the attentive matrix Aij ∈ Rp×p
with c channels. We propose an efficient bottleneck architecture which consists of 3 convolutional
layers. The architecture 2 starts with Conv2D(c, 1x1, d) and ends with Conv2D(d, 1x1, c), followed
by a BatchNorm [9] and a LeakyRelu [20]. We set c = k2 and d ≤ k2. Inspired by the recent work
of Wu et al. [28], we design the middle layer as a lightweight 2D convolution (LightConv2D) with
H attention heads, which is a depth-wise separable [2, 11, 24] convolution that shares d

H output
channels, and the weights are normalized using a Softmax2D.

1For each input sample in the training batch, the size of the pose matrix is (c× p× p), where c is the number
of channels. For simplicity, we frequently omit c from our notation.

2Conv2D(c, 1x1, d) is a 2D convolution with c input channels, 1x1 kernel size, d output channels.
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3.3 Straight-Through Router

Given the attentive matrix Aij , the Straight-Through Router (Rij) (Eqn.3) estimates a binary decision
signal δij ∈ {0: disconnect,1: connect}. We design the router to be a differentiable hard attention
module. The intuition is to allow learning the attention-based connectivity or relevance between
capsules. The Straight-Through Router consists of two sequential sub-modules, Decision-Learner
and Decision-Maker. We discuss the details 3 next.

Decision-Learner: The Decision-Learner learns a pair of decision scores Π ∈ R2, we will assume
Π = {π0, π1}. Conceptually, it can be defined as DLθDL : A ∈ Rc×p×p −→ Π ∈ R2. First, we
apply a global average pooling [19] on A, to capture the confidence maps [19] of the c channels and to
reduce the computational complexity. Then, we apply Conv2D(c, 1x1, c) followed by a BatchNorm [9]
and a LeakyRelu [20]. Finally, we apply Conv2D(c, 1x1, 2) to generate unnormalized decision real-
valued scores Π. Empirically, this simple architecture enables fast and efficient estimation of the
decision scores, which is essential to minimize the overall computational overhead of the routing
process between the capsules.

Decision-Maker: Given the real-valued scores Π, we estimate a binary decision parameter δ ∈ {0, 1}
that indicates a decision chosen from a set of two mutually exclusive and exhaustive events, (i) connect
(if δ = 1) or (ii) disconnect (if δ = 0) the route between the current two capsules. The Decision-
Maker can be represented as DM : Π ∈ R2 −→ I ∼ Bernoulli(δ), where I is a bernoulli (indicator)
random variable parameterized by δ ∈ {0, 1}. Conceptually, this representation can be seen as
a binarization function of the real-valued scores Π such that each value in the pair of the binary
outcomes is the complement of the other. A simple way to implementDM, is to adopt a deterministic
approach during training such as selecting the position with the maximum value of Π. However, this
approach is not differentiable and tends to memorize the same generated binary samples throughout
training. Propagating gradients through discrete stochastic nodes has been studied in the literature,
for example Bengio et al. [1], proposed a “straight-through estimator” to estimate and propagate the
gradients through discrete stochastic neurons. In our work, we adopt a “straight-through estimator”
based on Gumbel-Softmax [10].

Given a discrete categorical distribution with classes probabilities, we can draw samples using the
Gumble-Max trick [21, 4]. In our case, we have two classes (disconnect and connect), and we assume
that the unnormalized real-valued scores {π0, π1} generated by DLθDL are the log probabilities of
these two classes, i.e. πκ = log[pκ] where κ ∈ {0, 1} and pκ is the probability of class κ. Thus, we
can draw a sample from a Bernoulli distribution (as a special case of the categorical distribution)
parameterized by {p0, p1} as follows:

µ = argmax{0, 1}
[
(π0 + g0), (π1 + g1)

]
(6)

where {g0, g1} are i.i.d samples drawn from the Gumbel distribution Gumbel(0, 1) acting as a noise
to introduce stochasticity, Gumbel(0, 1) is defined as −log(−log(U)), U ∼ Uniform(0, 1). The
argmax is non-differentiable, however. Alternatively, we can use the Gumbel-Softmax Estimator [10]
to sample from a discrete Bernoulli distribution, by using a softmax as a continuous differentiable
approximation to argmax.

νκ =
exp(πκ + gκ)/τ∑1
κ̂=0 exp(πκ̂ + gκ̂)/τ

, κ ∈ {0, 1}, τ is the temperature (7)

The Decision-Maker DM is implemented as a straight-through Gumbel-softmax [10], which uses
Eqn.(6) in the forward pass. Thus, the binary decision parameter δ = µ. In the backward pass,
the gradients of the binary samples are approximated by computing the gradients of the continuous
softmax Eqn.(7), i.e. ∇θµ ≈ ∇θν.

4 Experiments

We evaluated our approach on the task of image classification using the following datasets:
MNIST [15], SmallNorb [16], CIFAR-10 [13], CIFAR-100 [13], and ImageNet [3]. The base-
line models are based on EMCaps [8], since the capsule in EMCaps [8] is formulated as a matrix
similar to our approach, and it showed better general performance compared to DynamicCaps [23].

3Henceforth, for simplicity we omit the subscript index (ij) from our notation.
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Models and training settings. Unless otherwise specified, STAR-CAPS models as well as EMCaps [8]
models consist of a (5 × 5) Conv with ReLU, 1 PrimaryCaps, 2 ConvCaps, and 1 ClassCaps.
The kernel size of ConvCaps is k = 3. The number of channels of Conv and the num-
ber of capsules in each layer will be specified for each model using the following notation:
#capsules={c̆, n0, n1, n2, n3} as described in (§ 3). We use Adam [12] optimizer, with coefficients
(0.9, 0.999). The initial learning rate is 0.01, and the training batch size T = 128.

Figure 3: Comparison between STAR-CAPS and EMCaps [8] models trained on MNIST. The gray box shows
#capsules {c̆, n0, n1, n2, n3}; whereas the green box shows the (training time; testing time) in secs per batch.

4.1 Evaluation on MNIST
We perform training on MNIST [15] gray-level 28x28 images. The dataset consists of 60K training
images and 10K testing images. We compare different STAR-CAPS and EMCaps models in terms of
accuracy, training time, and testing time. For STAR-CAPS models, we set k̂ = 3, and d = 3. For
EMCaps models, the number of routing iterations is 2. Figure 3 shows the classification accuracy of
different STAR-CAPS and EMCaps models. Each model varies in terms of the number of capsules
and the number of parameters. We notice that STAR-CAPS models yield better accuracy compared to
EMCaps models. Furthermore, STAR-CAPS shows more stable performance and faster training and
testing time. We point out that we could not train an EMCaps model with larger number of parameters
than the model shown in Figure 3, i.e. the EMCaps:{32, 32, 32, 32, 10} and 319K parameters. This is
because larger EMCaps models, in addition for being very expensive to train, they were overfitting
under different hyperparameters settings.
Table 1: Performance sensitivity to the predefined # capsules: STAR-CAPS vs. EMCaps evaluated on MNIST.
We report (mean±std) of the test accuracy of 3 runs.

Model #Params Accuracy(mean±std)

STAR-CAPS:{32, 4, 64, 4, 10} 143K 99.49±0.11
EMCaps:{32, 4, 64, 4, 10} 77K 96.89±0.13

STAR-CAPS:{64, 8, 64, 8, 10} 281K 99.57±0.09
EMCaps:{64, 8, 64, 8, 10} 159K 98.12±0.12

Our experiments show that the performance of the baseline EMCaps [8] models can be sensitive to
the numbers of capsules defined for each layer and their initializations. For instance, on MNIST,
training an EMCaps model in which one or more capsule layer contain a large number of capsules,
and the lower-level or the higher-level capsule layers have small number of capsules, the performance
of this model becomes unstable even with careful initializations of the capsules. On the other hand,
STAR-CAPS mitigates this problem by learning to disconnect the superfluous capsules during routing
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more efficiently. In Table 1, we compare the performance of STAR-CAPS and EMCaps using two
model variations that use different number of capsules.

4.2 Evaluation on SmallNorb
SmallNorb [16] contains gray-level stereo images of 5 toy classes. Each image represents 18
azimuths (range 0-340), 6 lightning variations, and 9 elevations. We follow the data preprocessing
as in EMCaps [8], yielding randomly cropped training image patches of size 32x32. We compare
the performance of two different STAR-CAPS and EMCaps models with comparable number of
parameters. STAR-CAPS:{32, 8, 8, 8, 5} achieves 98.0% compared to EMCaps:{64, 8, 16, 16, 5}
that achieves 97.8%; whereas both STAR-CAPS:{32, 32, 16, 16, 5} and EMCaps:{32, 32, 32, 32, 5}
achieve 98.2%.

Table 2: Detection of novel viewpoints on SmallNorb

Type1: (low capacity) Type2: (high capacity)

Model EMCaps STAR-CAPS CNN EMCaps STAR-CAPS
#Params 68K 73K 4.2M 316K 318K

Familiar 95.66±0.03 95.72±0.02 96.3 96.3 96.3
Novel 86.12±0.05 86.07±0.03 80.0 86.5 86.3

Detection of novel viewpoints: We use SmallNorb to evaluate the ability of STAR-CAPS to detect
novel viewpoints, similar to the experiments in EMCaps [8]. We create a subset of SmallNorb with
two parts, each part contains images of distinct azimuths range as follows: “Train-viewpoints” which
contains the training images with azimuths (300, 320, 340, 0, 20, 40), and “Test-viewpoints” that
has the testing images of azimuths range (60-280). We train two types of models (low capacity
and high capacity) for STAR-CAPS and EMCaps on “Train-viewpoints”, and we evaluate the models
on “Test-viewpoints”. Table 2 shows two types of experiments on SmallNorb (novel, familiar
viewpoints). Type1: 3 runs of EMCaps:{64, 8, 16, 16, 5}, STAR-CAPS:{32, 8, 8, 8, 5}, fully trained
on familiar views and tested on both novel and familiar views. Type2: EMCaps:{32, 32, 32, 32, 5},
STAR-CAPS:{32, 32, 16, 16, 5}, trained on familiar views and early stopped when test accuracy
reached 96.3% (as the CNN model in [8]). In Type1, we notice that STAR-CAPS achieves comparable
results (small difference in accuracy) to EMCaps both on familiar and novel viewpoints. In Type2, on
the novel viewpoints, STAR-CAPS performs dramatically better than CNN model (+6.3%) and its
accuracy is only slightly lower than EMCaps (-0.2%).

4.3 Evaluation on CIFAR-10/CIFAR-100
CIFAR-10 [13] and CIFAR-100 [13] datasets contain images of size 32x32, with 10 classes and
100 classes, respectively. For each dataset, the training set consists 50,000 images, and the test-
ing set has 10,000 images. We train a CIFAR-10 model based on STAR-CAPS:{32, 8, 8, 8, 10},
which achieves a test accuracy of 91.23% with test time of 0.21 secs/batch, compared to
EMCaps:{256, 32, 32, 32, 10} that achieves 88.10%. Another relevant work, is the EncapNet [17]
which achieves an accuracy of 88.07%. On CIFAR-100, our STAR-CAPS model achieves 67.66%,
while an EMCaps:{256, 32, 32, 32, 100} was not able to converge yielding 19%.

4.4 Evaluation on ImageNet
ImageNet [3] is a large-scale dataset with 1000 classes. As per our knowledge, there is no related
work that was able to train EMCaps [8] model on ImageNet. We point out that EncapNet [17] model
that reported preliminary results on ImageNet, was built upon a deep residual network [7] augmented
by a capsule module. We construct a STAR-CAPS model that starts with 7x7 Conv layer and output
64 channels, followed by a single bottleneck residual block with 256 output channels. Afterwards,
we add 4 capsule layers with 64 capsules for PrimaryCaps and 128 capsules for ConvCaps layers.
The Top-1 validation accuracy of this model is 60.07% and the Top-5 accuracy is 85.66%.

5 Conclusion
We presented STAR-CAPS, a capsule-based network that utilizes a straight-through attentive routing
to address the computational complexity of capsule networks. The proposed routing is a double-
attention mechanism utilizing (a) Attention Estimators that estimate attention matrices between
capsules, and (b) Straight-Through Routers to make binary connectivity decisions between capsules.
Our experiments showed that STAR-CAPS outperforms the baseline capsule models.
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